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Abstract. In this paper, we propose and investigate the stability of a novel
3-compartment ordinary differential equation (ODE) model of HIV infection
of CD4+ T-cells with a mass action term. Similar to various endemic models,
the dynamics within the model is fully determined by the basic reproduction
term R0. If R0 < 1, the disease-free (zero) equilibrium will be asymptotically
stable. On the other hand, if R0 > 1, there exists a positive equilibrium that
is globally/orbitally asymptotically stable under certain conditions within the
interior of a predefined region. Finally, numerical simulations are conducted to
illustrate and verify the results.

1. Introduction

In the field of epidemiology, although our knowledge of viral dynamics and virus-
specific immmune responses has not fully developed, numerous mathematical models
have been developed an investigated to describe the immunological response to HIV
infection (for example, [11, 2, 4, 18, 19, 12] and references therein). The models
have been used to explain different phenomena within the host body, and by directly
applying the models to real clinical data, they can also predict estimates of many
measures, including the death rate of productively infected cells, the rate of viral
clearance or the viral production rate.

These simple HIV models have played an essential role in providing a better
understanding in the dynamics of this infectious diseases, while providing very
important biological meanings for the (combined) drug therapies used against it.
For more references and detailed meta mathematical analysis on these models in
general, we can refer to survey papers written by Kirschner, 1996 [14] or Perelson
and Nelson, 1999 [8]

2020 Mathematics Subject Classification. Primary: 34D23 ; Secondaries: 34D20, 34D05, 34D08.
Key words and phrases. HIV; globally asymptotical stability; periodic solution; delay term;

steady state.
c©2019 Maltepe Journal of Mathematics.
Submitted on April 8th, 2021. Published on April 30th, 2021. Communicated by İbrahim

ÇANAK and Sefa Anıl SEZER..
30



STABILITY ANALYSIS OF A NOVEL ODE MODEL FOR HIV INFECTION 31

The simplest HIV model, only considering the dynamics of the virus concentration,
is

dV

dt
= P − cV (1.1)

where
• P is an unknown function representing the rate of production of the virus,
• V is the virus concentration.

The dynamics of the population of target cells (CD4+ T-cells for HIV or hepatic
cells for HBV and HCV) is still not fully understood. Nevertheless, a reasonable,
simple model for this population of cells, which can be extended further in various
models, is

dT

dt
= s− dT + aT

(
1− T

Tmax

)
(1.2)

with
• s representing the rate at which new T-cells are created from sources within

the body, such as the thymus, or from the proliferation of existing T-cells,
• d being the death rate per T-cells,
• a is the maximum proliferation rate of target T-cells, when the proliferation

is represented by a logistic function, and
• Tmax is the population density of T-cells at which proliferation shuts off.

Human immunodeficiency virus, or HIV, is a virus belonging to the genus
Lentivirus, part of the family Retroviridae [27]. It has an outer envelope of lipid and
viral proteins, which encloses its core. The virion core contains two positive-sense
single-stranded RNA and the enzyme reverse transcriptase, an RNA-dependent
DNA polymerase.

HIV, like most viruses, cannot reproduce by itself. Therefore, they require a host
cell and its materials to replicate. For HIV, it infects a variety of immune cells,
including helper T cells, lymphocytes, monocytes, and dendritic cells by attaching
to a specific receptor called the CD4 receptor contained in the cell membrane. Along
with a chemokine coreceptor, the virus is granted entry into the cell. Inside the host
cell, the viral RNA is transcribed into DNA by the enzyme reverse transcriptase.
However, the enzyme has no proofreading capacity, so errors often occur during this
process, giving rise to 1 to 3 mutations per newly synthesized virus particle. The
DNA provirus is then transported into the nucleus and inserts itself into the host
cell DNA with the aid of viral integrase. Thus, the viral genetic code becomes a
stable part of the cell genome, which is then transcribed into a full-length mRNA
by the host cell RNA polymerase. The full-length mRNA would be

(1) the genomes of progeny virus, which would be transported to the cytoplasm
for assembly,

(2) translated to produce the viral proteins, including reverse transcriptase and
integrase, and

(3) spliced, creating new translatable sequences
The nonstructural genes on the virus also encode regulatory proteins that have

diverse effects on the host cell, including down-regulating host cell receptors like
CD4 and major histocompatibility complex class I molecules, aiding in synthesizing
full-length HIV RNAs and enabling transportation of the viral mRNAs out of the
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nucleus without being spliced by the host cell. Altogether, these effects enable
viral mRNAs to be correctly translated into polypeptides and packaged into virions.
These components are then transported to the plasma membrane and assembled
into the mature virion, exiting the cell.

A person can contract the virus through one of four routes: sexual contact, either
homo- or heterosexual; transfusions with whole blood, plasma, clotting factors
and cellular fractions of blood; contaminated needles; perinatal transmission. The
virus causes tissue destruction, immunodeficiency and can progress to acquired
immunodeficiency syndrome (AIDS), completely breaking down the human body’s
defense mechanisms. These patients are now more susceptible to infections that
should be harmless to a normal person, such as P.jiroveci pneumonia or tuberculosis,
and the conditions are worse as well. So far, treatments for the disease mainly target
reverse transcriptase, viral proteases, and viral integration and fusion, dealing with
the virus infection before it progresses to AIDS. Currently, one treatment for HIV is
highly active antiretroviral therapy (HAART), which includes a combination of drugs
including nucleoside/nucleotide analog reverse transcriptase inhibitors, nonnucleo-
side reverse transcriptase inhibitors, protease inhibitors, fusion inhibitors, integrase
inhibitors, and coreceptor blockers. These drugs are administered based on individ-
ualized criteria such as tolerability, drug-drug interactions, convenience/adherence,
and possible baseline resistance. Although HAART can lower the viral load, the
virus reemerges if the treatment is stopped. Therefore, HIV infection is currently
both chronic and incurable. [28]

Whenever the population reaches Tmax, it will decrease, allowing us to impose an
upper constrain dTmax < s. With this constrain, the equation (1.2) has a unique
equilibrium at

T̂ =
Tmax

2a

[
a− d+

√
(a− d)2 +

4as

Tmax

]
(1.3)

In 1989, Perelson [5] proposed a general model for the interaction between the
human immune system and HIV; in the same paper, he also simplified that general
model into a simpler model with four compartments, whose dynamics are described
by a system of four ODEs:

• Concentration of cells that are uninfected (T ),
• Concentration of cells that are latently infected (T ∗),
• Concentration of cells that are actively infected (T ∗∗), and
• Concentration of free infectious virus particles (v).

Later, he extended his own model in Perelson et al. (1993) [6] by proving various
mathematical properties of the model, choosing parameter values from a restricted
set that give rise to the long incubation period characteristic of HIV infection, and
presenting some numerical solutions. He also observed that his model exhibits many
clinical symptoms of AIDS, including:

• Long latency period,
• Low levels of free virus in the environment, and
• Depletion of CD4+ cells.

The paper will be organized as follows: First, we will investigate a simplified
ODE model from Perelson et al. (1993) [6] by considering three main components:
the uninfected CD4+ T-cells (T ), the infected CD4+ T-cells (I), and the free virus
(V ) with. This model is also assumed to have a saturation response of the infection
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rate. Next, the existence and stability of the infected steady state are considered
through different theorems. Finally, numerical simulations are carried out, using
Julia, to confirm the obtained results, before some remarks are included in the
conclusion.

2. The proposal of the ODE model

Simplifying the model proposed in Perelson et al. (1993) [6] by reducing the
number of dimensions and assuming that all of the infected cells have the ability of
producing virus at an equal rate, we propose the following epidemic model of HIV
infection of CD4+ T-cells as follows:

dT

dt
= s− dT + aT

(
1− T

Tmax

)
− βTV

1 + αV
+ ρI

dI

dt
=

βTV

1 + αV
− (δ + ρ)I

dV

dt
= qI − cV − k1V T

(2.1)

where
• T (t) is the concentration of healthy CD4+ T-cells at time t (target cells),
• I(t) is the concentration of infected CD4+ T-cells at time t, and
• V (t) is the viral load of the virions (concentration of free HIV at time t).

In infection modelling, it is very common to augment (2.1) with a "mass-action"
term in which the rate of infection is given by βTV . This type of term is sensible,
since the virus must interact with T-cells in order to infect and the probability
of virus encountering a T-cell at a low concentration environment (where infected
cells and viral load’s motions are regarded as independent) can be assumed to be
proportional to the product of the density, which is called linear infection rate. As
a result, it follows that the classical models can assume that T-cells are infected at
rate −βTV and are generated at rate βTV .

With that simple mass-action infection term, the rates of change of uninfected
cells, T , productively infected cells I, and free virus V , would be

dT

dt
= s− dT + aT

(
1− T

Tmax

)
− βTV

dI

dt
= βTV − δI

dV

dt
= qI − cV

(2.2)

Moreover, although the rate of infection in most HIV models is bilinear for the
virus V and the uninfected target cells T , the actual incidence rates are probably
not strictly linear for each variable in over the whole valid range. For example, a
non-linear or less-than-linear response in V could occur due to the saturation at
a high enough viral concentration, where the infectious fraction is significant for
exposure to happen very likely. Thus, is it reasonable to assume that the infection
rate of HIV modelling in saturated mass action is

βTV x

1 + αV y
, x, y, α > 0 (2.3)
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In this paper, we will investigate the viral model with saturation response of the
infection rate where x = y = 1, for the sake of simplicity. With that being said, we
will proceed to explain the parameters within the model, with

• s is the rate at which new T-cells are created from source from precursors,
• d is the natural death rate of the CD4+ T-cells,
• a is the maximum proliferation rate (growth rate) of T-cells (this means

that a > d, in general),
• Tmax is the T-cells population density at which proliferation shuts off (their

carrying capacity),
• β is the rate constant of infection of T-cells with free virus,
• ρ is the "cure" rate, or the non-cytolytic loss of infected cells,
• δ is the death rate of the infected cells,
• q is the reproduction rate of the infected cells, and
• c is the clearance rate constant (loss rate) of the virions.

From the explanations above, we can say that
• δ+ρ is the total rate of disappearance of infected cells from the environment,
• 1/δ is the average lifespan of a productively infected cell
• q/δ is the total number of virions produced by an actively infected cell

during its lifespan, and
• q is the average rate of virus released by each cell.

Under the absence of virus (i.e, I(t) = V (t) = 0 ∀t > 0), the T-cell population
has a steady state value of

T0 =
Tmax

2a

[
(a− d) +

√
(a− d)2 +

4a

Tmax

]
(2.4)

The system (2.1) needs to be initialized with the following initial conditions

T (0) > 0, I(0) > 0, V (0) > 0, (2.5)
which lead us to denote that

R3
+ = {(T, I, V ) ∈ R3‖T ≥ 0, I ≥ 0, V ≥ 0}. (2.6)

3. Equilibrium and stability of the proposed model

3.1. Equilibria and local stability. The system (2.1) has two steady states: the
uninfected steady state E0 = (T0, 0, 0) and the (positive) infected steady state
Ē =

(
T̄ , Ī, V̄

)
, where:

T̄ =
Tmax

2a

a− d− δ qβ − (δ + ρ)

qα(δ + ρ)
+

√(
a− d− δ qβ − (δ + ρ)

qα(δ + ρ)

)2

− 4a

Tmax

(
δc

qα
− s
)

Ī =
[qβ − (δ + ρ)k1]T̄ − (δ + ρ)c

qα(δ + ρ)

V̄ =
1

α

[
qβT̄

α(δ + ρ)(c1 + k1T
− 1

]
.

(3.1)
Now, we will proceed to analyse the stability of the equilibria of system (2.1).
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Since T0 and T̄ satisfy

s− dT0 + aT0

(
1− T0

Tmax

)
= 0

s− dT̄ + aT̄

(
1− T̄

Tmax

)
= δĪ =

δ

qα(δ + ρ)
[(qβ − (δ + ρ))T − (δ + ρ)c]

(3.2)

we get that

T̄ >
c(δ + ρ)

qβ − (δ + ρ)k1
⇒ s− dT̄ + aT̄

(
1− T̄

Tmax

)
> 0 ⇒ T0 > T̄ , (3.3)

and

T̄ <
c(δ + ρ)

qβ − (δ + ρ)k1
⇒ s− dT̄ + aT̄

(
1− T̄

Tmax

)
< 0 ⇒ T0 < T̄ . (3.4)

Hence,

• If T̄ > c(δ+ρ)
qβ−(δ+ρ)k1 , then T0 > T̄ > c(δ+ρ)

qβ−(δ+ρ)k1 , which means that E0(T0, 0, 0)

is unstable, while the positive equilibrium Ē(T̄ , Ī, V̄ ) exists.
• If T̄ < c(δ+ρ)

qβ−(δ+ρ)k1 , then T0 < T̄ < c(δ+ρ)
qβ−(δ+ρ)k1 , which means that E0(T0, 0, 0)

is locally asymptotically stable, while the positive equilibrium Ē(T̄ , Ī, V̄ ) is
not feasible, as Ī < 0, V̄ < 0.

Let

R0 =

(
qβ − (δ + ρ)k1

c(δ + ρ)

)
T̄ . (3.5)

We can see that R0 is the bifurcation parameter. When R0 < 1, the uninfected
steady state E0 is stable and the infected steady state Ē does not exist (unphysical).
When R0 > 1, E0 becomes unstable and Ē exists.

For system (2.2), it is known that the basic reproductive ratio is given by:

R01 =

(
qβ − (δ + ρ)k1

c(δ + ρ)

)
T0 (3.6)

Once again, we emphasize the large difference of the basic reproduction ratio
between the linear infection rate and the saturation infection rate.

• If α→ 0, then T̄ → c(δ+ρ)
qβ−(δ+ρ) , R0 → 1;

• If α→ +∞, then T̄ → T0, R0 → R01.

The Jacobian matrix of system (2.1) is:(a− d)− 2aT
Tmax

− βV
1+αV ρ − βT

(1+αV )2
βV

1+αV −(δ + ρ) βT
(1+αV )2

−k1V q −c− k1T

 . (3.7)

Let E∗(T ∗, I∗, V ∗) be any arbitrary equilibrium. Then, the characteristic equation
about E∗ is:
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∣∣∣∣∣∣∣
λ+

(
(d− a) + 2aT∗

Tmax
+ βV ∗

1+αV ∗

)
−ρ βT∗

(1+αV ∗)2

− βV ∗

1+αV ∗ λ+ (δ + ρ) − βT∗

(1+αV ∗)2

k1V
∗ −q λ+ (c+ k1T

∗)

∣∣∣∣∣∣∣ = 0. (3.8)

For equilibrium E0 = (T0, 0, 0), (3.8) reduces to(
λ− a+ d+

2aT0
Tmax

)[
λ2 + (c+ δ + ρ)λ+ c(δ + ρ)− qβT0

]
= 0 (3.9)

Hence, we can see that E0 = (T0, 0, 0) is locally asymptotically stable if R0 < 1,
and it is a saddle point if dimW s(E0) = 2, or if dimW s(E0) = 1 while R0 > 1. As
a result, we have the following theorems.

Theorem 3.1. If R0 < 1, E0 = (T0, 0, 0) is locally asymptotically stable; else, if
R0 > 1, E0 = E0 = (T0, 0, 0) is unstable.

Theorem 3.2. There exists M > 0,M ∈ R such that for any positive solution
(T (t), I(t), V (t)) of system (2.1),

T (t) ≤M, I(t) ≤M,V (t) ≤M (3.10)

for all large enough t.

Proof. Let L(t) = T (t) + I(t) and assume that L(0) = T (0) + I(0) = const = c.
Calculating the derivative of L(t) using the equations in system (2.1), we have:

dL(t)

dt
=
dT (t)

dt
+
dI(t)

dt

= s− dT + aT

(
1− T

Tmax

)
− δI

= −dt− δI − a

Tmax

(
T − Tmax

2a

)2

+
4s+ aTmax

4

≤ −(T + I) min (d, δ)− a

Tmax

(
T − Tmax

2a

)2

+
4s+ aTmax

4

= −hL(t)−M0

(
h = min (d, δ),M0 =

4s+ aTmax

4

)
(3.11)

Let U(t) = L(t)− M0

h . This means that

U(0) = L(0)− M0

h
= c− M0

h
dU(t)

dt
=
dL(t)

dt

(3.12)

The inequality (3.11) can be rewritten as

dU(t)

dt
≤ (−h)U(t) (3.13)

which yields, according to Gronwall’s inequality,
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U(t) ≤ U(0) exp

(∫ t

0

(−h)ds

)
=

(
c− M0

h

)
exp

(
[−hs]t0

)
=

(
c− M0

h

)
exp(−ht)

≤ c− M0

h

(3.14)

or

T (t) + I(t) = L(t) = U(t) +
M0

h
= c− M0

h
+
M0

h
= c. (3.15)

As T (t) > 0, I(t) > 0 ∀i ∈ Z+, we can say that

V (t) ≤ c, I(t) ≤ c. (3.16)

Moreover, we also know that

dV

dt
= qI − cV − k1V T ≤ qI − cV ≤ qc− cV = −c(V − q). (3.17)

Setting V (0) = const = cV , using the exact same procedure with Gronwall’s
inequality, we obtain

V (t) ≤ cV ∀t ∈ Z+. (3.18)

With M = max (c, cV ), we would then conclude that

T (t) ≤M, I(t) ≤M, V (t) ≤M ∀t ∈ Z+. (3.19)

We can easily see that this set is convex. As a consequence, the system (2.1) is
dissipative.

The proof is complete. �

From this theorem, we define

D =
{

(T, I, V ) ∈ R3, 0 ≤ T, I, V ≤M
}
. (3.20)

Denote

M = d− a+
2aT̄

Tmax
, N =

βV̄

1 + αV̄
, P =

βT̄

(1 + αV̄ )2
. (3.21)

Then, the characteristic equation of the system around the equilibrium Ē(T̄ , Ī, V̄ )
reduces to:

λ3 + a1λ
2 + (a2 + a4)λ+ (a3 + a5) = 0, (3.22)

where
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a1 = M + (δ + ρ+ c1 + k1T̄ )

a2 = (δ + ρ)(c1 + k1T ) +M(δ + ρ+ c1 + k1T̄ ) + (−k1V̄ P )

a3 = ρ
[
−N(c1 + k1T̄ ) + Pk1V̄

]
+ PNq

a4 = −NP
a5 = M(δ + ρ)(c1 + k1T̄ )− P (δ + ρ)k1V̄ .

(3.23)

By the Routh-Hurwitz criterion [15], it follows that all eigenvalues of equation
(3.22) have negative real parts if and only if

a1 > 0, a3 + a5 > 0, a1(a2 + a4)− (a3 + a5) > 0. (3.24)

This leads us to the following theorems.

Theorem 3.3. Suppose that

(1) R0 > 1,
(2) a1 > 0, a3 + a5 > 0, a1(a2 + a4)− (a3 + a5) > 0.

Then, the positive equilibrium Ē(T̄ , Ī, V̄ ) is asymptotically stable.

Theorem 3.4. If R0 < 1, then E0(T0, 0, 0) is globally asymptotically stable.

Proof. First of all, as R0 < 1, we would have

T0 < T̄ <
c(δ + ρ)

qβ − (δ + ρ)
(3.25)

which means that

p <
(c+ k1T )(δ + ρ)

βT
. (3.26)

From the system (2.1), we would have

dI

dt
≤ βTV − (δ + ρ)I,

dV

dt
= qI − cV − k1V T.

(3.27)

Now, we would consider the following comparative system

dz1
dt

= βTz2 − (δ + ρ)z1

dz2
dt

= pz1 − cz2 − k1z2T.
(3.28)

We will consider the following form of Lyapunov function:

L(X) = V (z1, z2) =
δ + ρ

(βT )2
z21 +

1

c+ k1T
z22 . (3.29)

The derivative of the function can be calculated as follows
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dL

dt
=
∂L

∂z1

dz1
dt

+
∂L

∂z2

dz2
dt

= 2
δ + ρ

(βT )2
z1 (βTz2 − (δ + ρ)z1) + 2

1

c+ k1T
z2 (qz1 − cz2 − k1Tz2)

= −2

[(
δ + ρ

βT
z1

)2

+ z22 −
(
δ + ρ

βT
z1z2 +

q

c+ k1T

)
z1z2

]

≤ −2

[(
δ + ρ

βT
z1

)2

+ z22 −
(
δ + ρ

βT
+
β + ρ

βT

)
z1z2

]

= −2

[
δ + ρ

βT
z1 − z2

]2
≤ 0 ∀z1, z2.

(3.30)

We can see that the derivative is negative definite everywhere except at (0, 0).
This means that (z1, z2) = (0, 0) is globally asymptotically stable.

As we can also see that

0 ≤ I(0) ≤ z1(0), 0 ≤ V (0) ≤ z2(0) (3.31)
which means that, if the system (3.28) admits the initial values (z1(0), z2(0)), we

have that

I(t) ≤ z1(t), V (t) ≤ z2(t) ∀t > t1 (3.32)
or, in other words,

lim
t→+∞

I(t) = lim
t→+∞

V (t) = 0. (3.33)

From this, using the first equation of the system (2.1), for an ε in(0, 1) infinitesi-
mal,

s+ (a− d− δε)T − aT 2

Tmax
≤ dT (t)

dt
≤ s+ (a− d)T − aT 2

Tmax
∀t > t2 (3.34)

which shows that

lim
t→+∞

T (t) = T0. (3.35)

From (3.33) and (3.35), we conclude that the system is globally asymptotically
stable. The proof is complete. �

Theorem 3.5. If R0 > 1, then the system (2.1) is permanent.

Proof. If R0 > 1, we would have

(qβ − (δ + ρ)k1)T0 > (qβ − (δ + ρ)k1)T̄ > c(δ + ρ) (3.36)

We will proceed to prove the weak permanence of this system using contradiction.
Assume that the system is not weakly permanent, from Theorem 3.4, there exists

a positive orbit (T (t), I(t), V (t)) such that

lim
t→+∞

T (t) = T0, lim
t→+∞

I(t) = lim
t→+∞

V (t) = 0. (3.37)
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Since T0 >
c(δ+ρ)

qβ−(δ+ρ) , combining with (3.37), we choose an arbitrary infinitesimal
ε > 0 such that there exists a t0 > 0, for all t > t0,

T0 − ε
1 + αε

>
c(δ + ρ)

qβ − (δ + ρ)

T (t) > T0 − ε,
V (t) < ε.

(3.38)

Under these conditions, the system (2.1) becomes

dI

dt
=

βTV

1 + αV
− (δ + ρ)I ≥ β(T0 − ε)

1 + αε
V − (δ + ρ)I(t)

dV

dt
= qI − (c1 + k1T ) ≈ qI − cV − k1T0

(3.39)

Consider the following Jacobian matrix

Jε =

(
−(δ + ρ) β(T0−ε)

1+αε

q −(c+ k1T0).

)
(3.40)

Since Jε has positive off-diagonal element, according to the Perron - Frobenius
theorem, for the maximum positive eigenvalue j1 of Jε, there is an associated positive

eigenvector v =

(
v1
v2

)
.

Next, we consider a system associated with the Jacobian matrix Jε

dz1
dt

=
β(T0 − ε)

1 + αε
z2 − (δ + ρ)z1

dz2
dt

= qz1 − (c+ k1T0)z2.

(3.41)

Let z(t) = (z1(t), z2(t)) be a solution of (3.41) through (lv1, lv2) at t = t0, where
l > 0 satisfies that

lv1 < I(t0), lv2 < V (t0). (3.42)

As we know that the semi-flow of (3.41) is monotone and Jεv = v > 0, zi(t)(t =
1, 2) is strictly increasing, meaning limt→+∞ zi(t) = +∞. This contradicts the
Theorem 3.2, saying that the positive solution of (2.1) is bounded from above. This
contradiction says that there exists no positive orbit of (2.1) tends to (T0, 0, 0) and
t→ +∞. Combining this and a result provided in [23], we conclude that the system
(2.1) is permanent.

The proof is complete.
�

Theorem 3.6. Assume that D is convex and bounded. Suppose that the system

dX

dt
= F (X), X ∈ D (3.43)

is competitive, permanent and has the property of stability of periodic orbits. If
X̄0 is the only equilibrium point in intD and if it is locally asymptotically stable,
then it is globally asymptotically stable in intD.
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Proof. This matrix can easily be proven by considering the Jacobian matrix and
choose the matrix H as

H =

1 0 0
0 −1 0
0 0 1

 . (3.44)

By simple calculation, we obtain that

H
∂f

∂x
H =

(a− d)− 2aT
Tmax

− βV
1+αV −ρ − βT

(1+αV )2

− βV
1+αV −(δ + ρ) − βT

(1+αV )2

−k1V −q −c− k1T

 . (3.45)

This means that the system (2.1) is competitive in D, with respect to the partial
order defined by the orthant

K =
{

(T, I, V ) ∈ R3‖T ≤ 0, I ≥ 0, V ≥ 0
}
. (3.46)

�

Remark. As D is convex and the system (2.1) is competitive in D, we can say that
the system (2.1) satisfies the Poincare - Bendixson property. This has been proven
by Hirsch (1990) [22], Zhu and Smith (1994) [21] and Smith and Thieme (1991)
[24] that any three-dimensional competitive system that lie in convex sets would have
the Poincaré - Bendixson property; in other words, any non-empty compact omega
limit set that contains no equilibria must be a closed orbit.

Theorem 3.7. Let c = I(0) + T (0) and suppose that
(1) R0 > 1,
(2) a1 > 0, a3 + a5 > 0, a1(a2 + a4)− (a3 + a5) > 0.

Then, the positive equilibrium Ē(T̄ , Ī, V̄ ) of system (2.1) is globally asymptotically
stable provided that one of the following two assumptions hold

(3) Tmax
a−d+k1c

2a < m < T0 < Tmax
a−d+δ+k1c

2a ,
(4) m > Tmax

a−d+δ+k1c
2a .

As we have already known that the system (2.1) is competitive and permanent
(from Theorem 3.5 and Theorem 3.6), while Ē(T̄ , Ī, V̄ ) is locally asymptotically
stable if the two properties (i) and (ii) of Theorem 3.7 holds. As a result, in
accordance with Theorem 3.6 (choosing D = Ω), Theorem 3.7 if we can prove that
the system (2.1) has the stability of periodic orbits. We will proceed to prove this
under the following proposition.

Proposition 3.8. Assume condition 3. or 4. of Theorem 3.7 hold true. Then,
system (2.1) has the property of stability of periodic orbits.

Proof. Let P (t) = ((T (t), I(t), V (t)) be a periodic solution whose orbit Γ is contained
in intΩ. In accordance with the criterion given by Muldowney in [25], for the
asymptotic orbital stability of a periodic orbit of a general autonomous system, it is
sufficient to prove that the linear non-autonomous system

dW (t)

dt
=
(
DF [2] (P (t))

)
W (t) (3.47)

is asymptotically stable, where DF [2] is the second additive compound matrix of
the Jacobian DF [1].
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The Jacobian matrix of the system (2.1) is given by

J =

(a− d)− 2aT
Tmax

− βV
1+αV ρ − βT

(1+αV )2
βV

1+αV −(δ + ρ) βT
(1+αV )2

−k1V q −(c+ k1T )

 . (3.48)

For the solution P (t), the equation (3.47) becomes

dW1

dt
= −

(
δ + ρ− (a− d) +

2aT

Tmax
+

βV

1 + αV

)
W1 +

βT

(1 + αV )2
(W2 +W3),

dW2

dt
= qW1 +

(
a− d− 2aT

Tmax
− βV

1 + αV
− (c+ k1T )

)
W2 + ρW3,

dW3

dt
= k1VW1 +

βV

1 + αV
W2 − (δ + ρ+ c+ k1T )W3.

(3.49)
To prove that the system (3.49) is asymptotically stable, we shall use the following

Lyapunov function, which is similar to the one found in [26] for the SEIR model:

L(W1(t),W2(t),W3(t), T (t), I(t), V (t)) =

∥∥∥∥(W1(t),
I(t)

V (t)
W2(t),

I(t)

V (t)
W3(t)

)∥∥∥∥ ,
(3.50)

where ‖·‖ is the norm in R3 defined by

‖(W1,W2,W3)‖ = sup{|W1|, |W2 +W3|}. (3.51)

From Theorem 3.5, we obtain that the orbit of P (t) remains at a positive distance
from the boundary of Ω. Therefore,

I(t) ≥ η, V (t) ≥ η, η = min{I,V} ∀t→ +∞. (3.52)

Hence, the function L(t) is well defined along P (t) and

L(W1,W2,W3;T, I, V ) ≥ η

M
‖(W1,W2,W3)‖ . (3.53)

Along a solution (W1,W2,W3) of the system (3.49), L(t) becomes

L(t) = sup

{
|W1(t)| , I(t)

V (t)
(|W2(t)|+ |W3(t)|)

}
. (3.54)

Then, we would have the following inequalities

D+|W1(t)| ≤ −
(
δ + ρ− (a− d) +

2aT

Tmax
+

βV

1 + αV

)
|W1|+

βT

(1 + αV )2
(|W2(t)|+ |W3(t)|)

D+|W2(t)| ≤ q|W1(t)|+
(
a− d− 2aT

Tmax
− βV

1 + αV
− (c+ k1T )

)
|W2(t)|+ ρ|W3(t)|

D+|W3(t)| ≤ k1V |W1(t)|+ βV

1 + αV
|W2(t)| − (δ + ρ+ c+ k1T )|W3(t)|.

(3.55)
From this, we get
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D+
I

V
(|W2|+ |W3|) =

(
dI/dt

V
− IdV/dt

V 2

)
(|W2|+ |W3|) +

I

V
D+(|W2|+ |W3|)

≤
(
dI/dt

I
− dV/dt

V

)
I

V
(|W2|+ |W3|) +

(
qI

V
+ k1I

)
|W1|

−
(
−a+ d+

2aT

Tmax
+ (c+ k1T )

)
I

V
|W2(t)| − (δ + c+ k1T )

I

V
|W3(t)|.

(3.56)
Thus, we can obtain

D+L(t) ≤ sup{g1(t), g2(t)}L(t), (3.57)
where

g1(t) = −δ − ρ+ a− d− 2aT

Tmax
− βV

1 + αV
+

βTV

I(1 + αV )2

g2(t) =
qI

V
+ k1I +

dI/dt

I
− dV/dt

V
−G1

G1 = min

{
−a+ d+

2aT

Tmax
+ (c+ k1T ), δ + c+ k1T

}
.

(3.58)

From the second equation of the system (2.1), we obtain

g1(t) = −δ − ρ+ a− d− 2aT

Tmax
− βV

1 + αV
+

βTV

I(1 + αV )2

≤ −δ − ρ+ a− d− 2aT

Tmax
− βV

1 + αV
+

βtV

I(1 + αV )

= a− d− 2aT

Tmax
− βT

1 + αV
+
dI/dt

I
.

(3.59)

Here, we consider two different cases.
• Case 1: If Point 3. of Theorem 3.7 holds, then

− δ < a− d− 2aT

Tmax
< 0, (3.60)

that is

G1 = −a+ d+
2aT

Tmax
+ (c+ k1T ). (3.61)

Then, we would obtain

g2(t) = a− d− 2aT

Tmax
+ k1I +

dI/dt

I
= g1(t) + k1I +

βV

1 + αV
> g1(t). (3.62)

Hence,

sup{g1(t), g2(t)} ≤ a− d− 2aT

Tmax
+ k1I +

dI/dt

I
≤ −µ1 +

dI/dt

I
, (3.63)

where

µ1 > 0, a− d− 2aT

Tmax
+ k1I ≤ −µ1 < 0 (3.64)
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with the assumption that k1I is negligible compare to the term a− 2aT
Tmax

.
This assumption would be verified in the examples of the simulation part
below.

• Case 2: If Point 4. of Theorem 3.7 holds, then

− a+ d+
2aT

Tmax
≤ δ, (3.65)

which means that G1 = δ + c+ k1T . Then, we obtain that

µ2 < 0, g1(t) < g2(t) = k1T − δ +
dI/dt

I
≤ −µ2 +

dI/dt

I
(3.66)

with the same assumption that k1T < σ in reasonably practical scenarios.
Hence,

sup{g1(t), g2(t)} ≤ −µ+
dI/dt

I
. (3.67)

Let µ = min{µ1, µ2}. Then, form (3.63) and (3.66), we have

sup{g1(t), g2(t)} ≤ −µ+
dI/dt

I
, (3.68)

or

D+L(t) ≤
(
−µ+

dI/dt

I

)
L(t). (3.69)

According to Gronwall’s inequality, we would have

L(t) ≤ L(0) exp

(∫ t

0

[
−µ+

dI/dt

I

]
ds

)
= L(0) exp

(
[−µs+ ln(I(s))]

t
0

)
= L(0) exp(−µt) exp (ln(I(t))− ln(I(0)))

= L(0) exp(−µt) I(t)

I(0)

≤ ML(0)

I(0)
exp(−µt)→ 0 as t→ +∞.

(3.70)

From (3.53), we conclude that

(W1(t),W2(t),W3(t))→ 0 as t→ +∞. (3.71)

This implies that the linear system equation (3.49) is asymptotically stable,
and, therefore, the periodic solution is asymptotically orbitally stable. This proves
proposition 3.8.

�

Theorem 3.9. Suppose that
(1) R0 > 1,
(2) a1 > 0, a3 + a5 > 0, a1(a2 + a4)− (a3 + a5) > 0.

Then, system (2.1) has an orbitally asymptotically stable periodic solution.
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Proof. First, we perform a change of variables as follows:

z1(t) = −T (t), z2(t) = I(t), z3(t) = −V (t) (3.72)

Applying this transformation to the system (2.1), we obtain

dz1(t)

dt
= −s− dz1 + az1

(
1 +

z1
Tmax

)
+

βz1z3
1− αz3

+ ρz2

dz2(t)

dt
=

βz1z3
1− αz3

− (δ + ρ)z2

dz3(t)

dt
= −qz2 − cz3 + k1z1z3.

(3.73)

The Jacobian matrix of the system (3.73) is then given by

J(z) =

a− d+ 2az1
Tmax

+ βz3
1−αz3 ρ βz1

(1+αz3)2
βz3

1−αz3 −(δ + ρ) βz1
(1+αz3)2

k1z3 −q −c+ k1z1.

 (3.74)

Similar to the definition of the set D at 3.20, we define set E as:

E = {(z1, z2, z3) : z1 ≤ 0, z2 ≥ 0, z3 ≤ 0} . (3.75)

Since J(z) has non-positive off diagonal elements at each point of E, (3.73) is
competitive at E. Set z∗ = (−T ∗, I∗, V ∗). It is easy to see that z∗ is unstable and
det J(z∗) < 0. Furthermore, it follows from Theorem 3.5 that there exists a compact
set B in the interior of E such that for any z0 ∈ intE, there exists T (z0) > 0 such
that z(t, z0) ∈ B for all t > T (z0). Consequently, by Theorem 1.2 in Zhu and Smith
(1994) [21] for the class of three-dimensional competitive systems, it has an orbitally
asymptotically stable periodic solution.

The proof is complete. �

4. Numerical simulation

After providing all the analytical tools and qualitatively analysing the system for
patterns on its dynamics, in this section, we will perform some numerical analysis
on the model to verify the previous results.

4.1. Simulation tools. The numerical simulation is conducted on the programming
language Julia through the package DifferentialEquation.jl, A Performant and
Feature-Rich Ecosystem for Solving Differential Equations in Julia by Rackauckas
and Nie (2017) [29].

In order to avoid any stiffness in the ODE models, the algorithm for the Method
of Steps in Julia is set to Rosenbrock23, which is the same as the classic ODE
solver ode23s in MATLAB.

The simulation is conducted on a system with a 2.0 GHz dual core Intel core i5
with 16GB of RAM.
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Parameters and Variables Values
Dependent variables
T Uninfected CD4+ T-cell population size 250 mm−3
I Infected CD4+ T-cell density 50 mm−3
V Initial density of HIV RNA 160 mm−3
Parameters and Constants
s Source term for uninfected CD4+ T-cells 5 day−1 mm−3
d Natural death rate of CD4+ T-cells 0.01 day-1

a Growth rate of CD4+ T-cell population 0.8 day−1
Tmax Maximal population level of CD4+ T-cells 1500 mm−3
β Rate CD4+ T-cells became infected with virus 2.4× 10−4 mm−3
α Saturated mass-action term 0.001
ρ Rate of cure 0.01 day−1
δ Blanket death rate of infected CD4+ T-cells 0.3 day−1
q Reproduction rate of the infected CD4+ T-cells 500 mm−3 day−1
c Death rate of free virus 8 day−1

Table 1. Preliminary values of variables and parameters for viral spread.

Parameters Original scenario Scenario #2 Scenario #3 Scenario #4
s 5 − − −
d 0.01 − − −
a 0.8 8 − −
Tmax 1500 − − −
β 2.4× 10−4 − 0.0024 0.0024
α 0.001 0.0001 0.000001 0.000001
ρ 0.01 0.01 − −
δ 0.3 5 − −
q 500 − 2.5 2.5
c 8 1.3 3 1.3

Table 2. Values of parameters for viral spread in different scenarios.

4.2. Simulation results. Within the range of parameters that are proven to be
realistic in medical research, we investigate the behavior of the model within 4
different scenarios.

• The original scenario: In this scenario, the conditions 1, 2 and 3 in
Theorem 3.7 are satisfied. This means that, the positive equilibrium of the
system (2.1) is globally asymptotically stable.

• Scenario #2: In this scenario, the conditions 1, 2 and 4 in Theorem 3.7
are satisfied. This means that, the positive equilibrium of the system (2.1)
is also globally asymptotically stable.

• Scenario #3: In this scenario, the conditions 1 and 2 of Theorem 3.3 are
satisfied. This means that, the positive equilibrium of the system (2.1) is
locally asymptotically stable.

• Scenario #4: In this scenario, the conditions 1 and 2 of Theorem 3.9 are
satisfied. This means that, the positive equilibrium of the system (2.1) is
orbitally asymptotically stable.
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Figure 1. The ODE model is locally asymptotically stable with
parameters in the original scenario

Figure 2. The ODE model is locally asymptotically stable with
parameters in Scenario #2
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Figure 3. The ODE model is locally asymptotically stable with
parameters in Scenario #3

Figure 4. The ODE model is orbitally asymptotically stable with
parameters in Scenario #4

Appendix A. Detailed proof of used theorems

Theorem A.1 (Gronwall, 1919). Let I denote an interval of the real line of the
form [a, inf) or [a, b] or [a, b) with a < b. Let β and u be real-valued continuous
functions defined on I. If u is a differentiable function in the interior I0 of I (the
interval I without the end points a and possibly b) and satisfies the differential
inequality

u′(t) ≤ β(t)u(t), t ∈ I0 (A.1)
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then u is bounded by the solution of the corresponding differential equation ν′(t) =
β(t)ν(t):

u(t) ≤ u(a) exp

(∫ t

a

β(s)ds

)
. (A.2)

Theorem A.2 (Lyapunov’s stability). Let a function V (X) be continuously dif-
ferentiable in a neighbourhood U of the origin. The function V (X) is called the
Lyapunov function for an autonomous system

X′ = f(X) (A.3)
if the following conditions are met:
(1) V (X) > 0 for all X ∈ U \ {0};
(2) V(0) = 0;
(3) dV

dt ≤ 0 for all X ∈ U .
Then, if in a neighborhood U of the zero solution X = 0 of an autonomous system
there is a Lyapunov function V (X) with a negative definite derivative dV

dt for all
X ∈ U \ {0}, then the equilibrium point X = 0 of the system is asymptotically stable.

Theorem A.3 (Perron - Frobenius Theorem). [20] Let A be an irreducible Metzler
matrix (A Metzler matrix is a matrix whose all of its off-diagonal elements are
non-negative). Then, λM , the eigenvalue of A of largest real part is real, and the
elements of its associated eigenvector vM are positive. Moreover, any eigenvector of
A with non-negative elements belongs the the span of vM .

Theorem A.4 (Poincaré - Bendixson Theorem). [3]
Given a differentiable real dynamical system defined on an open subset of the

plane, every non-empty compact ω-limit set of an orbit, which contains only finitely
many fixed points, is either

• a fixed point,
• a periodic orbit, or
• a connected set composed of a finite number of fixed points together with
homoclinic and heteroclinic orbits connecting these.

Moreover, there is at most one orbit connecting different fixed points in the same
direction. However, there could be countably many homoclinic orbits connecting one
fixed point.

Next, we will give the definition of an additive compound matrix and consider
the particular case when it’s a square matrix [1]. A survey of properties of additive
compound matrices, along with their connections to differential equations have been
investigated in [25, 26].

We will start with the definition of the k-th exterior power (or multiplicative
compound) of an n×m matrix.

Definition A.1 (Multiplicative compound of a matrix). Let A be an n×m matrix
of real or complex numbers. Let ai1,i2,...,ik,j1,j2,...,jk be the minor of A determined
by the rows (i1, ..., ik) and the columns (j1, ..., jk), 1 ≤ i1 < i2 < ... < ik ≤ n, 1 ≤
j1 < j2 < ... < jk ≤ m. The k-th multiplicative compound matrix A(k) of A is the(
n
k

)
×
(
m
k

)
matrix whose entries, written in lexicographic order, are ai1,...,ik,j1,...,jk .

In particular, when A is an n× k matrix with columns a1, a2, ..., ak, A(k) is the
exterior product a1 ∨ a2 ∨ ... ∨ ak.
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In the case m = n, the additive compound matrices are defined as follows.

Definition A.2. Let A be an n× n matrix. The k-th additive compound A[k] of A
is the

(
n
k

)
×
(
n
k

)
matrix given by

A[k] = D(I + hA)‖h=0. (A.4)

If B = A[k], the following formula for bi,j can be deduced from the equation
(A.4). For any integer i = 1, ...,

(
n
k

)
, let (i) = (i1, i2, ..., ik) be the i-th member in the

lexicographic ordering of all k-tuples of integers such that 1 ≤ i1 < i2 < ... < ik ≤ n.
Then,

bi,j =


ai1,i1 + ...+ aik,ik if (i) = (j)

(−1)r+sais,jr if exactly one entry is in (i) does not occur in (j)

and jr does not occur in (i),
0 if (i) differs from (j) in two or more entries.

(A.5)

In the extreme cases when k = 1 and k = n, we would have that A[1] = A and
A[n] = tr(A). For n = 3 ,which is the case that we are considering in this paper, we
would have the matrices A[k], k = 0, 1, 2 as follows:

A[1] = A, A[2] =

a11 + a22 a23 −a13
a32 a11 + a33 a12
−a31 a21 a22 + a33

 , A[3] = a11 + a22 + a33.

(A.6)
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