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Abstract

In this study we introduced a sequence of bicomplex numbers whose coefficients are chosen
from the sequence of Jacobsthal-Lucas numbers. We also present some identities about the
known some fundamental identities such as the Cassini’s, Catalan’s and Vajda’s identities.

1. Introduction and preliminaries

Quaternionic numbers, defined by Hamilton in 1843, led to the existence of an algebraic structure with all the properties of real and complex
numbers, except the property of change of multiplication. There are also many studies on quaternions’ coefficients( see, [1],[2],[3]). The
recognition and identification of bicomplex numbers was made by James Cockle[4]. Cockle defined a bicomplex number as b = z1 + jz2
using the new unit j, which Hamilton described, inspired by the definition of quaternions. In 1892, Segre gave different interpretations of this
algebra by studying again on bicomplex numbers algebra[5]. In [6], Price, while dealing with the field properties of bicomplex numbers,
some authors [7], [8], [9],[10] made some important studies on bicomplex holomorphic functions. In the last years, some studies have been
done on bicomplex numbers. In particular, one can refer to the related sources for some studies made using different representations of these
numbers [11], [9]. Furthermore, there are some studies on bicomplex numbers and their algebraic, geometric, topological and dynamic
properties. For some of these studies, the reader can look at [12], [13], [4],[14], [15]. Recently, the studies conducted by selecting the
coefficients of bicomplex numbers from different sequences have attracted attention. Because it is easier to work with these new sequences
created using the properties of the selected a sequence, it is also easier to find application areas in other fields. One of these studies, the
coefficients by selecting from the Fibonacci sequence and using idempotent notation, by made Halici[11]. Jacobsthal and Jacobsthal-Lucas
sequences have a rich history, especially in view of its relationship to the Fibonacci numbers these are studied by some authors. Cerin, in
[13], examined the products of Jacobsthal numbers and gave sum of their squares. A. F. Horadam studied the Jacobsthal representation
numbers and Fibonacci quaternions [16],[17]. Szynal-Liana and Włoch worked on Jacobsthal quaternions[18]. Diana, in [19], considered
Fibonacci octonions and generalized Fibonacci-Lucas octonions. Jacobsthal and Jacobsthal-Lucas sequences, respectively, are defined by the
aid of the following recursive relations[20]: For n≥ 2

Jn = Jn−1 +2Jn−2; J0 = 0, J1 = 1

and
jn = jn−1 +2 jn−2; j0 = 2, j1 = 1.

Moreover, these sequences can be also given by the following formulas: For n≥ 0

Jn =
1
3
{2n− (−1)n} , jn = 2n +(−1)n.

We listed some important identities used some of them:

∞

∑
i=1

jixi−1 = (1+4x)(1− x−2x2)−1.
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jn+1 + jn = 3.2n, n≥ 0.

jn+1− jn = 2n−2(−1)n, n≥ 0.

jn+r + jn−r = 2n−r(22r +1)+2(−1)n−r, n≥ r.

jn+r− jn−r = 2n−r(22r−1), n≥ r.

jn = Jn+1 +2Jn−1.

jnJn = J2n, n≥ 0.

Jm jn + Jn jm = 2Jm+n; Jm jn− Jn jm = (−1)n2n+1Jm−n.

The set of bicomplex numbers is as follows:

BC =
{

z1 + z2j|z1, z2 ∈C, j2 =−1
}
.

Here, i, j are different and commuting imaginary units, ij = ji, ii = jj = −1. Hyperbolic unit k arises from the multiplication of the two
imaginary units i and j ; ij = k. In the set BC, the addition operation is component-wise and the multiplication operation is done taking into
account the multiplication of the base elements.
Now, let’s define a new bicomplex sequence whose coefficients are selected from Jacobsthal Lucas sequence. If we denote nth bicomplex
Jacobsthal number by jBQn, then we can write it as follows: For n≥ 0

jBQn = jn + i jn+1 + j jn+2 + ij jn+3,

where jn is nth Jacobsthal-Lucas number. Let us write the set of such numbers as follows:

BC j =
{

jCn + jCn+2 j| jCn = jn + i jn+1, jCn+2 = jn+2 + i jn+3, j2 =−1
}
.

Then one can write
BC j = { jBQ0, jBQ1, jBQ2, . . . , jBQn, . . .} .

Notice that the nth element of this sequence satisfy the following recurrence relation

jBQn = jBQn−1 +2 jBQn−2.

For any two elements jBQn, jBQm the algebraic operations are as follows:

jBQn + jBQm = ( jn + jm)+( jn+1 + jm+1)i+( jn+2 + jm+2)j+( jn+3 + jm+3)ij,

jBQn− jBQm = ( jn− jm)+( jn+1− jm+1)i+( jn+2− jm+2)j+( jn+3− jm+3)ij,

jBQn jBQm = sc( jBQn jBQm)+ vec( jBQn jBQm),

where the scalar and vectorial parts are follows.

sc( jBQn jBQm) = ( jn jm− jn+1 jm+1− jn+2 jm+2 + jn+3 jm+3)

vec( jBQn jBQm) = ( jn jm+1 + jn+1 jm− jn+2 jm+3− jn+3 jm+2)i

+( jn jm+2− jn+1 jm+3 + jn+2 jm− jn+3 jm+1)j

+( jn jm+3 + jn+1 jm+2 + jn+2 jm+1 + j(n+3) jm)ij

respectively.

2. Main identities

In this section we provide some fundamental identities such as the Cassini’s, Catalan’s, Vajda’s identities. The elements of the sequence
{ jBQn}n≥0 can be seen as the coefficients of the power series of the corresponding generating function.
Now, let us give the generating function for the bicomplex Jacobsthal-Lucas numbers.

Theorem 2.1. The generating function for the numbers jBQn is

G(t) =
jBQ0(1− t)+ jBQ1t

1− t−2t2 .
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Proof. Suppose G(t) is a generating function for jBQn

G(t) =
∞

∑
i=0

jBQit i.

Multiply this function by t and t2, respectively, to take advantage of the recursive relation. Thus, we write

tG(t) = jBQ0t + jBQ1t2 + . . .+ jBQntn+1 + . . . .

t2G(t) = jBQ0t2 + jBQ1t3 + . . .+ jBQntn+2 + . . . .

Using the characteristic equation and making needed arrangements, we get

G(t)(1− t−2t2) = jBQ0 + t( jBQ1− jBQ0),

G(t) =
∞

∑
i=0

jBQit i

which is desired result.

Theorem 2.2. For integers n,r such that n≥ r, we have

i) jBQn + jBQn+1 = 3αα
n.

ii) jBQn+r− jBQn−r = α(2n+r−2n−r).

Proof. Using the Binet formula the accuracy of the desired equations can be easily seen.

Theorem 2.3. For the bicomplex Jacobsathal-Lucas sequence jBQn, the following equality is then provided:

n

∑
s=1

jBQs =
1
2
( jBQn+2− jBQ2).

Proof. In order to prove the claim we will use the following equalities:

{ jn}n≥0 = {2,1,5,7,17,31,65,127,257,511, . . .}

and
n

∑
i=1

ji =
jn+2−5

2
.

So, we have
n

∑
s=1

jBQs =
n

∑
s=1

js + i
n

∑
s=1

js+1 + j
n

∑
s=1

js+2 + ij
n

∑
s=1

js+3.

This implies that
n

∑
s=1

jBQs =
1
2
{( jn+2 + i jn+3 + j jn+4 + ij jn+5)− (5+7i+17j+31ij)} .

This proves our result. That is,
n

∑
s=1

jBQs =
1
2
( jBQn+2− jBQ2).

The following formula gives any element of the sequence BC j and this formula is known as the Binet formula.

Theorem 2.4. (Binet’s Formula) For every positive integer n, the following equality holds.

jBQn = αα
n +ββ

n

where

α = (1+2i+4j+8ij) and β = (1− i+ j− ij).

Proof. The general term of the sequence { jBQn}n≥0 is jBQn = Aαn +Bβ n. Using the roots α ,β of the characteristic equation associated
with the recurrence jBQn = jBQn−1 +2 jBQn−2 we get the values A and B as follows:

A =
jBQ1− jBQ0β

3
, B =

− jBQ1 + jBQ0α

3
.

Writing these values in the equation jBQn = Aαn +Bβ n, we have

jBQn =
jBQ1− jBQ0β

3
α

n +
− jBQ1 + jBQ0α

3
β

n,

jBQn = (1+2i+4j+8ij)αn +(1− i+ j− ij)β n

which is desired.
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Theorem 2.5. For the integers n,m such that n≥ m, Catalan’s identity is follows:

jBQn+m jBQn−m− jBQ2
n = αβ (αβ )n−m

{
(αβ )2m−2(αβ )m +1

}
.

Proof. From the Binet formula, we write

jBQn+m jBQn−m− jBQ2
n = (αα

n+m +ββ
n+m)(αα

n−m +ββ
n−m)− (αα

n +ββ
n)2.

If we use the fact αβ = βα , then we get

jBQn+m jBQn−m− jBQ2
n = αβ (αn+m

β
n−m +α

n−m
β

n+m−2α
n
β

n).

jBQn+m jBQn−m− jBQ2
n = αβ (αn

β
n)

{
αm

β m−1
+

β m

αm−1

}
.

Hence, after the some calculations we obtain the following equality which is desired result:

jBQn+m jBQn−m− jBQ2
n = αβ (αβ )n−m

{
(αβ )2m−2(αβ )m +1

}
.

Theorem 2.6. For n≥ 1, Cassini’s identity is follows:

jBQn−1 jBQn+1− jBQ2
n = 9αβ (αβ )n−1.

Proof. One can see that αβ = βα . Also, by considering the multiplication rules of the base elements we write

jBQn−1 jBQn+1− ( jBQn)
2 = αβ (αn−1

β
n+1 +α

n+1
β

n−1−2α
n
β

n).

By making the necessary adjustments and calculations, we obtain

jBQn−1 jBQn+1− jBQ2
n = 9αβ (αβ )n−1.

Thus, we completed the proof.

Notice that Theorem 2.6 is an immediate consequence of Theorem 2.5. In this case, m = 1, Catalan’s formula induces the Cassini’s formula:

jBQn−1 jBQn+1− jBQ2
n = 9αβ (αβ )n−1.

Theorem 2.7. (d’Ocagne Identity). For the elements jBQn, we have

jBQm jBQn+1− jBQn jBQm+1 = 3αβ (αn
β

m−α
m

β
n).

Proof. From the Binet’s formula, the equality

jBQm jBQn+1− jBQn jBQm+1

is equal to this:

αβ {αm
β

n(β −α)+α
n
β

m(α−β )} .

Hence, we get

jBQm jBQn+1− jBQn jBQm+1 = 3αβ (αn
β

m−α
m

β
n).

3. Conclusion

In this study, we introduced the bicomplex number sequence whose coefficients are chosen from the Jacobsthal-Lucas sequence. We gave
algebraic properties of the elements of this sequence and obtained their Binet formula. We also obtained the well known some generalized
identities related with these numbers such as Cassini and Catalan identities. It should be note that due their applications in different areas, the
study of these numbers can give other properties and applications.
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