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ABSTRACT: Two novel C2-symmetrical chiral tetraamide compounds derived from (S)-isoleucine 

were synthesised and their enantiomeric recognition abilities towards enantiomers of some amino acid 

esters and 1-arylethylamins were examined by UV-titration method. These receptor compounds 

exhibited strong complexation (with Ka  up to 5787.23 M-1) and very good  enantioselectivity (up to 

KaS/KaR= 13.98). 
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INTRODUCTION 

Enantiomeric recognition is a special type of molecular recognition and is based on the principle 

that the molecular receptor form complexes with enantiomers of a chiral molecule with different ability 

(Marchi-Artzner et al., 1998; Bohanon et al., 1999; Pu, 2004; Hembury et al., 2008). Enantiomeric 

recognition study of new model systems is essential in our understanding the selectivity of complex 

biological processes. Therefore, the design and synthesis of new chiral systems for small chiral 

molecules could contribute to offer new perspectives for the development of pharmaceuticals, 

enantioselective sensors, catalysts and other molecular devices (Izatt et al., 1994; Horvath et al., 2000; 

Tang et al., 2006; Qing et al., 2009; Demirtas et al., 2009; Su et al., 2009). 

Chiral amines, protonated amines, and amino acids are the basic building blocks of a wide variety 

of biological processes. And also, these chiral compounds play an important role in the design and 

synthesis of pharmaceuticals and other chiral molecules. Therefore the enantiomeric recognition study 

of these compounds is of very important. The design of receptors with a chiral recognition ability for 

chiral amino acids and amines is still receiving considerable attention, although much work on 

enantiomeric recognition of amino compounds by chiral macrocyclic ligands has been reported 

(Chadwick et al., 1984; Diederich, 1988; Fitzmaurice et al., 2002; Karakaplan and Aral, 2005; Aydın et 

al., 2009; Köylü et al., 2011). Especially C2-symmetric ligands have been widely used in chiral 

recognition (Kizirian et al., 2003; Turgut et al., 2009). Amide units are often used as binding cites of 

these receptor molecules because of their high affinity towards both anions and cations due to the bearing 

both hydrogen bonding donor and acceptor atoms (Zhang et al., 2014).  

Since the pioneering research on the application of chiral recognition reported by Cram and co-

workers, great number of chiral macrocyclic and complex structured ligands have been synthesized and 

studied for enantiomeric recognition of racemic compounds (Nakashima et al., 2000; Lu et al., 2010; 

Lee et al., 2010; Deniz et al., 2011; Park et al., 2012; Sipos et al., 2012; Bako et al., 2012; Howard et al., 

2013; Yi et al., 2013; Tsioupi et al., 2013; Paik et al., 2013; Guo et al., 2013; Liu et al., 2014; Şeker et 

al., 2014) However, in recent years non-cyclic ligands have begun to be used in enantiomeric recognition 

studies (Peri et al., 1998; Liu et al., 2001; Wang et al., 2007; Ballistreri et al., 2010; Aral et al., 2013; 

Kormos et al., 2013; Ulatowski and Jurczak, 2014; Pal et al., 2015; Forte et al., 2015; Pal et al., 2016). 

Still there are limited papers have been reported on the using non-cyclic ligands as chiral receptor for 

enantiomeric recognition of the racemic compounds.  

 

 
Figure 1. Synthesis of C2-symmetrical chiral tetraamides. 
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Figure 2. Chiral compounds used as guests for enantiomeric recognition of receptor 1 and 2. 

We report herein a practical synthesis of two novel C2-symmetrical chiral tetra-amide ligands (1 

and 2) starting from (S)-isoleucine (Figure 1) and evaluation of enantiomeric recognition properties of 

these ligands toward amino acid esters and 1-arylethylamines (Figure 2) by UV-Vis titration method. 

MATERIALS AND METHODS 

General 

All chemicals were reagent grade unless otherwise specified. R/S 1-phenylethylamine and 1-(1-

naphthyl)ethylamine, R/S-amino acid methyl ester hydrochlorides, oxalyl chloride and isophtaloyl 

chloride were purchased from the Sigma-Aldrich or Merck chemical company. Silica gel / TLC-cards 

(F254) used for thin layer chromatography (TLC) were purchased from the Merck chemical company. 

Melting points were determined by a Gallenkamp Model apparatus with open capillaries. Infrared 

Spectra were recorded on a Mattson 1000 FTIR model spectrometer. Optical rotations were taken on a 

Perkin Elmer 341 model polarimeter. 1H (400 MHz) and 13C (100 MHz) NMR spectra were recorded on 

a Bruker DPX-400 High Performance Digital FT-NMR Spectrometer. The chemical shifts (d) and 

coupling constants (J) are expressed in parts per million and hertz. 

Syntheses 

Receptor 1 (N1,N2-bis((1S,2S)-1-(4-phenylbutylcarbamoyl)-2-methylbutyl)oxalamide) 

The oxalyl chloride solution (0.98 g, 7.75 mmol) in dry THF was added drop wise to the solution 

of amine (2 g, 15.5 mmol) in dry THF at 0 ℃ under argon atmosphere. Then, the reaction was continued 

to be stirred for three hours at room temperature. After the completion of reaction the mixture was 

extracted with 1 N HCl (2×100 mL), 10% NaHCO3 (2×100 mL) and distilled water (2×100 mL). Organic 

layer was dried over MgSO4, filtered, and THF was evaporated by rotary evaporator under reduced 

pressure to obtain white solids as a pure product. Mp: 212-214 ℃ decomposed. [α]D
25 = -38.5 (c= 0.7, 

CHCl3); 
1H NMR (CDCl3, 400 MHz)  (ppm): 0.82-0.95 (m, 6H), 1.55-1.73 (m, 12H), 2.09-2.18 (m, 

2H), 2.58-2.63 (m, 4H), 2.99-3.11 (m, 2H), 3.31-3.40 (m, 2H), 4.28 ( t, J=12 Hz, 2H), 6.91 (bs, 2H, 

amide HN-), 7.10-7.35 (m, 10H), 8.60 (bs, 2H, amide HN-). 13C NMR (CDCl3, 400 MHz)  (ppm): 

10.99, 15.47, 25.06, 28.31, 28.61, 35.45, 36.18, 39.41, 58.66, 125.80, 128.38, 141.99, 159.54, 170.18. ; 

IR (cm-1): 3308, 3257, 3082, 2960, 2934, 2858, 1663, 1644, 1218, 1171. CHN Anal. calcd. for 

C34H50N4O4 (%): C, 70.56%;   H, 8.71%;   N, 9.68%. Found: C, 70.62%; H, 8.82%;   N, 9.65%. 

Receptor 2 (N1,N2-bis((1S,2S)-1-(4-phenylbutylcarbamoyl)-2-methylbutyl)phthalamide) 

The isophtalolyl chloride solution (1.57 g, 7.75 mmol) in dry THF was added drop wise to the 

solution of amine (2 g, 15.5 mmol) in dry THF at 0 ℃ under argon atmosphere. Then, the reaction was 

continued to be stirred for three hours at room temperature. After the completion of reaction the mixture 

was extracted with 1 N HCl (2×100 mL), 10% NaHCO3 (2×100 mL) and distilled water (2×100 mL) 

respectively. Organic layer was dried over MgSO4, filtered, and THF was evaporated by rotary 

evaporator under reduced pressure to obtain white solids as a pure product. Mp: 228-234 ℃ decomposed. 
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[α]D
25 = -14.9 (c=0.8, CHCl3); 

1H NMR (CDCl3, 400 MHz)  (ppm): 0.88-0.98 (m, 12H), 1.54-1.67 (m, 

12H), 1.82-2.14 (m, 2H), 2.57-2.61 (m, 4H), 3.10-3.40 (m, 2H+2H), 4.34 (4, J=12, 2H), 6.53 (bs, 2H, 

amide HN-), 7.11-7.38 (m, 13H), 7.86 (d, 2H, amide HN), 8.18 (s, 1H).  13C NMR (CDCl3, 400 MHz) 

 (ppm): 11.14, 15.50, 25.26, 28.68, 29.04, 35.43, 37.32, 39.38, 58.64, 125.81, 126.24, 128.33, 128.35, 

130.14, 134.51, 142.00, 166.68, 171.26. IR (cm-1): 3285, 1267, 3074, 2954, 2927, 2853, 1651, 1636, 

1252. CHN Anal. calcd. for C40H54N4O4: C, 73.36%;  H, 8.31%;   N, 8.56%;   O, 9.77%. Found: C, 

73.45%; H, 8.41%;   N, 8.51%. 

RESULTS AND DISCUSSION 

Synthesis 

In the first stage of this study, two novel C2-symmetrical chiral tetra-amide ligands (1, 2) having 

four stereogenic centers were synthesized starting from (S)-isoleucine (Figure 1).  Starting amine 

compound was re-synthesized according to the procedure described in the related reference (Aral et al., 

2017). This compound bearing amide group was reacted with oxalyldichloryde and isophtaloyl chloride 

to give the C2-symmetrical chiral tetra-amide compounds 1 and 2 respectively with quantitative yields. 

The synthesis procedure is quite simple and no further purification is performed except for the work-up 

process. Pure products were obtained after the extraction process. The structure proposed for these chiral 

tetraamides (1, 2) were confirmed by 1H NMR, 13C NMR and FTIR spectroscopic analyses. 

Enantiomeric Recognition Studies By UV-Vis Titration Method 

UV-Vis spectroscopy is a commonly used method for calculating binding constants. Standard UV-

Vis titration experiments were applied for calculating association constant (Ka) of complex formed 

between receptor and guest molecules (Figure 2) according to Benesi–Hildebrand equation basis of UV-

Vis spectrum of complexes in CHCl3 at 25 ºC (Bennesi and Hildebrand, 1949). Examples of 

experimental data for UV titration of (S)- and (R)-Histidine-OMe hydrochloride ((S)-His and (R)-His)  

with receptor 1 and 2 are shown in Table 1. 

 

Table 1. Experimental data for UV titration of L- and D-Histidine with receptor 1 and 2.  

Receptor Conc. Guests Conc. Receptor 1 Receptor 2 

[H]o (× 10-3) M [G]o (× 10-3) M (S)-Histidine (R)-Histidine (S)-Histidine (R)-Histidine 

A ∆A A ∆A A ∆A A ∆A  

1.00 0 0.401  0.401  0.420  0.420  

1.00 0.20 0.602 0.202 0.488 0.088 0.618 0.198 0.469 0.049 

1.00 0.50 0.693 0.293 0.568 0.168 0.680 0.260 0.512 0.092 

1.00 0.80 0.726 0.326 0.645 0.245 0.730 0.310 0.586 0.166 

1.00 1.00 0.737 0.337 0.695 0.295 0.741 0.321 0.610 0.190 

1.00 1.50 0.750 0.350 0.725 0.325 0.755 0.335 0.701 0.281 

1.00 2.00 0.759 0.359 0.759 0.359 0.759 0.339 0.759 0.339 

1.00 3.00 0.764 0.364 0.772 0.372 0.764 0.344 0.784 0.364 

1.00 4.50 0.777 0.377 0.788 0.388 0.771 0.351 0.790 0.370 

1.00 6.00 0.784 0.384 0.790 0.390 0.774 0.354 0.800 0.380 

[H]o: Concentration of the host, [G]o: Concentration of the guest in each UV tube, A: UV absorbance at λmax 

 

Plots of calculated 1/ΔA values as a function of 1/ΔG0 values gave excellent linear relationships 

for all guest molecules examined, supporting 1:1 complexation between receptor molecules and guests. 

To confirm 1:1 stoichiometry, Job plots for the complexes were studied.  The typical UV spectral 

changes upon addition of (S)-His to receptor 2 are shown in Figure 3. 
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Figure 3. Typical plot of 1/ΔA versus 1/[G0] for host-guest complexation of receptor 2  with (S)-His. 

 

Table 2. Association constants (Ka) and enantioselectivities KS/KR (or KR/KS) for the complexation of L-/D-guests 

with the receptor 1 and 2 in CDCl3 at 25 ºC 

Receptor Guest Ka(M-1) -ΔG0 (kj.mol-1)a ΔΔG0 (kj.mol-1)b Ka
R/Ka

S 

1 (S)-Val 412.40 14.9 5.10 7.85 

(R)-Val 3236.75 20.00 

(S)-Ala 710.70 16.29 2.56 2.84 

(R)-Ala 2015.83 18.85 

(S)-His 1048.13 17.23 4.00   5.03 

(R)-His 5270.83 21.23 
(S)-PEA 157.94 12.54 2.34   2.57 

(R)-PEA 406.45 14.88 

(S)-NEA 96.68 11.32 4.64   6.49 

(R)-NEA 627.57 15.96 

Receptor Guest Ka (M-1) -ΔG0 (kj.mol-1)a ΔΔG0 (kj.mol-1)c Ka
S/Ka

R 

2 

 

 

(S)-Val 780.37 16.50 4.39 5.88 

(R)-Val 132.83 12.11 

(S)-Ala 509.98 15.44 3.82 4.54 

(R)-Ala 111.93 11.68 

(S)-His 5787.23 21.46 6.53 13.98 

(R)-His 414.06 14.93 

(S)-PEA 1225.35 17.62 4.85 7.06 

(R)-PEA 173.49 12.77 

 (S)-NEA 1896.10 18.70 5.55 9.37 

(R)-NEA 202.32 13.15 
a ΔGº= -2.303RTLogK 
b ΔΔGº= -(ΔGºR - ΔGºS)  
c ΔΔGº= -(ΔGºS - ΔGºR 

 

It has been shown that receptor 1 and 2 show weak, strong and very strong complexations with 

guest enantiomers. The weakest complexation occurred between receptor 1 and (R)-NEA (Ka = 202.32 

M-1), while the strongest complexation occurred between receptor 2 and (S)-His (Ka = 5787.23 M-1). In 

general, the receptor 1 forms a stronger complexation with Val and Ala enantiomers which are bearing 

aliphatic alkyl groups, while the receptor 2 forms a stronger complexation with the PEA and NEA 

enantiomers which are containing aromatic rings. Presumably, while phenyl ring of PEA and NEA 

enantiomers provide strong interaction with receptor 2 containing phenyl ring attached to the carbonyl 

groups, leads to steric repulsion with receptor 1 that does not contain any atoms between carbonyl 

groups. Therefore, receptor 1 exhibited stronger complexation with valine and alanine than PEA, NEA 

enantiomers. However, His is show strong complexation with both of receptor 1 and 2. It may be due to 
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the nitrogen atom of imidazole ring of His. These hetero atoms provide stronger hydrogen bonding and 

ion-dipole interaction with amide groups of receptor molecules. The binding constant (Ka), free energy 

change (-ΔG0 and -ΔΔG0) and enantioselectivity (KaR/KaS) for complexes formed between receptors (1, 

2) and guest enantiomers are given in Table 2. 

It was found that receptor 1 recognise (R)- enantiomers of all guest while receptor 2 recognise (S)-

enantiomers of all guests. Receptor 1 forms strongest complexation with (R)-His, but highest 

enantioselectivity with Val (KaR/KaS = 7.85, ΔΔG0 = 5.10 kj.mol-1).  Receptor 1 provides the weakest 

complexation with the NEA enantiomers, while exhibiting a very high enantioselectivity (KaR/KaS = 

6.49, ΔΔG0 = 4.64 kj.mol-1).  Compared with NEA, PEA showed lower enantioselectivity due to lower 

steric repulsion of phenyl ring towards receptor 1 (KaR/KaS = 2.57, ΔΔG0 = 2.34 kj.mol-1), and receptor 

2 (KaR/KaS = 7.06, ΔΔG0 = 4.85 kj.mol-1). Similarly, valine with a more bulky alkyl group provided 

higher selectivity than alanine towards both receptor 1 and 2. 

Receptor 2 shows stronger complexation and higher enantioselectivity with NEA, PEA and His 

guests containing aromatic ring, than Val and Ala. The strongest complexation and highest 

enantioselectivity were occurred between receptor 2 and (S)-His (KaS = 5787.23 M-1, KaS/KaR = 13.98, 

ΔΔG0 = 21.46 kj.mol-1), while lowest complexation and enantioselectivity occurred between Ala 

(KaS/KaR = 4.54, ΔΔG0 = 3.82 kj.mol-1). 

CONCLUSION 

Two new C2-symmetrical chiral tetraamide compounds as potential enantioselective receptors 

have been synthesized, and their enantiomeric recognition ability towards three amino acid methyl ester 

hydrochloride and two 1-arylethylamines were studied. Both Receptor 1 and 2 show strongest 

complexation with His, while receptor 1 shows highest enantioselectivity toward Val, and receptor 2 

shows highest enantioselectivity toward His. These results show that hydrogen bonding, ion-dipole 

interaction, π- π interaction and van der Waals interactions play a role in complexation. Bulky groups 

on the guest molecule lead to weaker complexation, higher enantioselectivity. Extra heteroatoms in the 

guest molecules give stronger hydrogen bonding and ion dipole interaction and leading to stronger 

complexation. As a result, two synthesized receptors (1, 2) showed high or very high enantioselectivity 

towards the all guest molecules used. 
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