

J Inno Sci Eng, 2020, 4(1): 11-21

https://doi.org/10.38088/jise.693098

Research Article

11

 A Comparison of Software Defect Prediction Metrics Using Data Mining Algorithms

Abstract

Data mining is an interdisciplinary field that uses methods such as machine learning,

artificial intelligence, statistics, and deep learning. Classification is an important data

mining technique as it is widely used by researchers. Generally, statistical methods or

machine learning algorithms such as Decision Trees, Fuzzy Logic, Genetic

Programming, Random Forest, Artificial Neural Networks and Logistic Regression have

been used in software defect prediction in the literature. Performance measures such as

Accuracy, Precision, Mean Absolute Error (MAE) and Root Mean Squared Error

(RMSE) are used to examine the performance of these classifiers. In this paper, 4 data

sets entitled JM1, KC1, CM1, PC1 in the PROMISE repository, which are created within

the scope of the publicly available NASA institution's Metric Data Program, are

examined as in the other software defect prediction studies in the literature. These

datasets include Halstead, McCabe method-level, and some other class-level metrics.

Data sets are used with Wakiato Environment for Knowledge Analysis (WEKA) data

mining software tool. By this tool, some classification algorithms such as Naive Bayes,

SMO, K *, AdaBoost1, J48 and Random Forest were applied on NASA error datasets in

PROMISE repository and their accuracy rates were compared. The best value among the

accuracy rates was obtained in the Bagging algorithm in the PC1 data set with the values

of %94.13.

Keywords: Software Defect Prediction, McCabe, Halstead, Data Mining, Accuracy,

Random Forest

Cite this paper as:

GÜVEN AYDIN, Z.B., SAMLI, R. (2020). A

Comparison of Software Defect Prediction

Metrics Using Data Mining Algorithms.

Journal of Innovative Science and

Engineering. 4(1): 11-21

*Corresponding author: Zeynep Behrin

GÜVEN AYDIN

E-mail: zeynepguven@maltepe.edu.tr

Received Date: 24/02/2020

Accepted Date: 05/05/2020

© Copyright 2020 by

Bursa Technical University. Available

online at http://jise.btu.edu.tr/

The works published in Journal of

Innovative Science and Engineering

(JISE) are licensed under a Creative

Commons Attribution-NonCommercial 4.0

International License.

 Zeynep Behrin GUVEN AYDIN 1 ,2* , Ruya SAMLI2

1* Department of Software Engineering, Maltepe University, Istanbul, Turkey
2 Department of Computer Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey

https://orcid.org/0000-0002-4121-8220
https://orcid.org/0000-0002-8723-1228

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

12

1. Introduction

Nowadays, software is very important for everyone who uses computer systems. For this reason, software errors cause

large or serious problems. With the development of technology in recent years, a lot of data is produced in every field.

Defects in software are usually caused by source code. Some of this data needs to be cleaned daily. Defect prediction is

a rapidly growing subfield of data mining.

Some coding standards have been established in order to develop software with better quality and reliability. Software

quality depends on various factors such as accuracy, availability, maintenanceability, testability and so on. A software

is subjected to various tests throughout the development process. Errors detected are eliminated and the reliability of the

software is increased. In every phase of software, an error can occur. However, detecting errors in the earlier stages of

testing will reduce the test costs. For a software developer, defect prediction is a very important process to provide the

quality and reliability of a software [1]. Data mining techniques and machine learning algorithms are useful in prediction

of software defects. Public software defect prediction dataset repositories are increasing day by day. One of them is the

PROMISE dataset, owned by NASA, which conducts space exploration.

So in this paper a software defect prediction study was presented. The aim of this paper is to evaluate and compare the

performance of the above mentioned classification algorithms and perform a comparative study with other research works.

The implementation of these algorithms is carried out in WEKA data mining tool on JM1, CM1, KC1 and PC1 data sets

freely available from the PROMISE data repository.

The rest of the paper is organized as follows: In the second section, the studies on defect prediction using machine

learning methods are shown. In the third section metric sets and data sets are given in detail. The results and discussion

can be found in Section 4 and Section 5 provides a conclusion.

2. Related Works

 In this section, the literature studies about software defect predictions by data mining methods were summarized in table.

As seen from the table, there are many different algorithms such as Support Vector Machine, Logistic Regression,

Multilayer Perceptron, Radial Basis Function, Naive Bayes, Bayes Belief Network, Random Forest, Decision Tree,

Logistic Model Trees, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Least Angle Regression,

Classification and Regression Tree, Alternating Decision Tree, Augmented Naive Bayes, Artificial Neural Networks

and Discriminant Analysis were used for defect prediction. Also, it can be easily seen that there is not a definite “best

algorithm” in this process and the algorithm which gives the best results change according to the dataset. In table-1 SVM

is Support Vector Machine, LR is Logistic Regression, MP is Multilayer Perceptron, RBF is Radial Basis Function, NB

is Naive Bayes, BBN is Bayes Belief Network, RF is Random Forest, DT is Decision Tree, LMT is Logistic Model

Trees, LDA is Linear Discriminant Analysis, QDA is Quadratic Discriminant Analysis, LARS is Least Angle

Regression, CART is Classification and Regression Tree (CART), ADT is Alternating Decision Tree, ANB is

Augmented Naive Bayes, ANN is Artificial Neural Networks, and DA is Discriminant Analysis.

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

13

Table 1. Related Works

Reference Data Sets Data Mining Algorithms Best

[2] NASA J48, NB NB

[3] NASA SVM, LR,k-NN, MP, RBF, NB, BBN, RF, DT SVM

[4] NASA RF, LMT, LDA, QDA, NB, Bayes Net, LARS,

k-NN, ANN, SVM, C4.5, CART, ADT

RF

[5] NASA, Eclipse NB, LR, RF, ANB RF

[6] Open source web and

Mozilla e-mail suite

Logistic Regression, LR, DT, ANN LR

[7] NASA Multi-Layered Perceptron, Bayesian Network,

NB, ANN

NN

[8] NASA J48 and K* J48

[9] NASA LR, DA, Classification Tree, Boosting, Kernel

Density, NB, J48, IBk, Voted Perceptron, VF1,

Hyperpipes, ROCKY, RF

RF

[10] NASA NB, DT NB

[11] Telecommunication

system,Eclipse

project, NASA

NB, K-NN, SVM, LR SVM

[12] Eclipse project DT, K-NN, RF K-NN

and J-48

Predicting the fault-prone software modules is of a great interest among the software quality researchers and industry

professionals [13]. As a result of this, various efforts have been made for software defect prediction using methods such

as Desicion Trees [3], Artificial Neural Networks [4], Support Vector Machines [5], Bayesian Methods [6], Naive Bayes

[7], Fuzzy Logic [8, 9], Dempster–Shafer Belief Networks [10], Genetic Programming [11], Casebased Reasoning [12,

13], and Logistic Regression [14, 15]. In the literature, there are many classification techniques, some of the most

commonly used ID3, C4.5, logistic regression, linear and quadratic discriminant analysis, k-nearest neighbor, ANN and

SVM [16].

In the literature, generally the fault concept is investigated. A fault is a defect in source code that causes failures when

executed [17]. Data mining techniques and machine learning algorithms are useful in prediction of software defects.

Data mining technique comprises of classification, regression, clustering and association [18]. It has been seen in the

literature that there are many studies on data mining methods and software error estimation. In these studies, Halstead

and McCabe software metrics and NASA datasets were used, and more machine learning methods were successful in

predicting errors. Table 1 shows which data sets are used in the literature, which data mining algorithms are preferred

and which algorithm has the most successful results.

3. Material and Methods

There are many studies in the literature with WEKA. The study was conducted on these data using clustering algorithms

presented in WEKA. In this study the version of WEKA is used WEKA 3.8 [19]. WEKA software can calculate such as

mean absolute error, root mean squares mean, relative absolute error and root relative squared error. This section consists

of two main parts: (i) data sets and (ii) confusion matrix

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

14

3.1. Data Sets

 In this study, four data sets entitled JM1, PC1, KC1, CM1 belonging to NASA in the PROMISE database were studied.

The data sets contain information from some NASA softwares. These datasets have an .arff extension so the file can be

easily used in WEKA. Table 2 gives the names of the data sets, the number of properties they have, the number of

registers, the programming language developed, and the content of the data set.

Table 2. Data Sets Properties

Data Set Number of

Feature

Number of

Record

Programming

Language

Data Sets Content

JM1 22 10885 C Ground System

KC1 22 2109 C++ Location Warehouse

Management

CM1 38 498 C Spacecraft Tools

PC1 22 1109 C Earth orbit in flight

The data sets include metric measurement values and variables. Each of the records in the dataset has a class label, which

means that there is either a reported or not reported error of the software module to which it is connected [20]. The Table

3 describes the properties of the McCabe and Halstead metrics used in the data sets. These data sets are primarily located

in the PROMISE data warehouse, with the .arff extension, consisting of some metrics such as the complexity of the

software from the software included in the datasets, the number of lines of code, basic and derived measurements.

Detailed information about the definitions and calculations of McCabe and Halstead Metrics is as follows.

Table 3. Metrics Properties

Attribute Explanation

loc McCabe “line count of code”

v(g) McCabe "cyclomatic complexity"

ev(g) McCabe "essential complexity"

iv(g) McCabe "design complexity"

n Halstead total operators + operands

v Halstead "volume"

l Halstead "program length"

d Halstead "difficulty"

i Halstead "intelligence"

e Halstead "effort"

b Halstead

t Halstead time estimator

lOCode Halstead line count

lOComment Halstead count of lines of comments

lOBlank Halstead count of blank lines

lOCodeAndComent

uniq_Op unique operators

uniq_Opnd unique operands

total_Op total operators

total_Opnd total operands

branchCount of the flow graph

defects {false,true} module has/has not one or

more reported defects

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

15

McCabe metrics include four software metrics, consisting of essential complexity, cyclomatic complexity, design

complexity, and Lines of Code (LOC) . Cyclomatic Complexity or "v (G)" measures the number of "linearly

independent paths". If no path in the cluster is a linear combination of other paths in the cluster via a program's

"flowgraph", a path set is said to be linear independent. The flowchart is a directed graph in which each node

corresponds to a program expression, and each arc shows the control flow from one expression to another.

"v (G)" is calculated by 𝑣(𝐺) = 𝑒 − 𝑛 + 2 where "G" is the flow chart of a program, "e" is the number of springs in

the flow chart, and "n" is the nodes in the flow chart. Standard McCabes rules ("v (G)"> 10) are used to define the

error-prone module.

Essential Complexity or "ev(G)" is a measure of a flow chart that can be "reduced" by parsing all G subflowgraphs

that are "D structured primers". Such "D-structured primers" are sometimes referred to as "single inlet single outlet

downstream diagrams". "ev (G)" is calculated using 𝑒𝑣(𝐺) = 𝑣(𝐺) − 𝑚 ; where m is the number of sub flowgraphs

of "G", which are D-structured primers.

Design Complexity or "iv (G)" is the cyclomatic complexity of a module's reduced flow chart. The "G" flowgraph of

a module is reduced to eliminate the complexity that does not affect the relationship between the design modules.

According to McCabe, this complexity measurement reflects the modules that immediately call models to their

dependent modules.

Lines of code is measured according to McCabe's line count rules. Halstead metrics are divided into three groups: basic

measures, derived measures and lines of code measures [21].

Table 4. Metric Details

Basic Measures

Derived Measures

mu1 number of unique operators

𝑃 = 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑉 = 𝑁 ∗ 𝑙𝑜𝑔2(𝑚𝑢) the number of mental

comparisons needed

to write a program of

length N

mu2 number of unique operands 𝑉∗ = (2 + 𝑚𝑢2′) ∗ 𝑙𝑜𝑔2(2 + 𝑚𝑢2′) volume on minimal

implementation

N1 total occurrences of operators 𝐿 = 𝑉∗/𝑁 program length

N2 total occurrences of operands 𝐷 = 1/𝐿 difficulty

length 𝑁 = 𝑁1 + 𝑁2 𝐿′ = 1/𝐷

vocabulary 𝑚𝑢 = 𝑚𝑢1 + 𝑚𝑢2 𝐼 = 𝐿′ ∗ 𝑉′ intelligence

mu1' = 2

potential operator count (just the

function name and the "return"

operator)

𝐸 = 𝑉/𝐿

effort to write

program

mu2' potential operand count. (the number

of arguments to the module)
𝑇 =

𝐸

18
𝑠𝑒𝑐𝑜𝑛𝑑

time to write program

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

16

3.2. Confusion Matrix

A confusion matrix is a powerful analysis tool that allows to visualize estimated values against actual values. In the

machine learning context, a confusion matrix is a metric used to quantify the performance of a machine learning

classifier. In addition to this confusion matrices are useful because they give direct comparisons of values like True

Positives, False Positives, True Negatives and False Negatives. The Confusion matrix is the state of a data set and the

number of true and false estimates of our classification model, transformed into a table. The general form of the

confusion matrix is given in Table 5.

Table 5. General Confusion Matrix

Actual Class

Predicted Class

Positives Negatives

Positives TP (True Positives) FN (False Negatives)

Negatives FP (False Positives) TN (True Negatives)

TP (True Positives): It shows examples that are actually positive and classified as positive.

FP (False Positives): It shows examples that are actually negative and classified as positive.

TN (True Negatives): It shows examples that are actually negative and classified as negative.

FN (False Negatives): It shows examples that are actually positive and classified as negative.

The following performance measures can be calculated from the confusion matrix.

Accuracy:

It is the ratio of the number of correctly classified samples to the number of samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1)

Precision:

The ratio of the number of positive samples correctly classified to the number of positive classified samples.

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

17

Mean Absolute Error (MAE):

It calculates absolute average error differences between predicted values and actual values.

𝑀𝐴𝐸 =
∑ |𝑥𝑖−𝑥|𝑁

𝑖=1

𝑁
 (3)

Root Mean Squared Error:

It calculates by the square root of the sum of squares of the difference between the estimated and actual values.

𝑅𝑀𝑆𝐸 = √∑ |𝑥𝑖−𝑥|2𝑁
𝑖=1

𝑁
 (4)

where 𝑥𝑖 (𝑖 = 1,2, … , 𝑁) is the real output, 𝑁 is the number of outputs.

4. Results and Discussion

In this study, on NASA's 4 different data sets (JM, PC1, KC1, CM1), WEKA data mining software tool with various

algorithms were implemented with a 10-fold validation rule (Figure 1). Table 6 shows the accuracy rates of the algorithms

applied for 4 data sets. The data sets used were analyzed by classification method and the algorithms were implemented

in the open source data mining software tool WEKA, a 10-fold cross validation rule.

Figure 1. Average Accuracy Rate Graph showing comparison between accuracy values of Table 6

% 81,09 % 83,26
% 87,53 % 88,43

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

JM1 KC1 CM1 PC1

Accuracy Rate

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

18

Table 6. Accuracy Results of All Algorithms

ALGORITHMS JM1 (%) KC1 (%) CM1 (%) PC1 (%)
BAYES
Bayes Net 68.05 76.42 64.15 74.39

Naive Bayes 80.42 80.75 85.34 89.17

Naive Bayes Multinomial 83.68 70.68 90.53

Naive Bayes Multinominal Text 80.65 83.12 90.16 93.05

Naive Bayes Multinomial Updateable 83.68 70.68 90.53

Naive Bayes Updatable 80.42 80.75 85.34 89.17

FUNCTIONS

Logistic 81.35 84.65 88.35 92.42

Multilayer Perceptron 80.95 84.10 87.55 93.59

SGD 70.77 84.10 89.55 93.05

SGDText 80.65 83.12 90.16 93.05

Simple Logistic 81.12 84.65 89.15 92.60

SMO 80.75 83.26 89.15 92.96

Voted Perceptron 52.21 83.12 90.16 92.60

LAZY

lBk 76.97 84.10 84.73 92.06

K* 78.56 82.14 87.14 91.79

LWL 80.65 83.12 89.75 93.23

META

Iterative Classifier Optimizer 80.89 84.37 89.15 93.05

Adaboost1 80.79 83.54 90.16 93.05

Attribute Selected Classifier 80.86 83.12 89.35 93.41

Bagging 81.19 84.10 89.75 94.13

Classification via Regression 81.24 84.93 89.35 93.14

CVParameter Selection 80.65 83.12 90.16 93.05

Filtered Classsifier 81.12 83.40 90.16 93.50

Logi Boost 80.89 84.51 88.95 93.14

Multi Class Classifier 81.35 84.65 88.35 92.42

Multi Class Classifier Updatable 80.77 84.10 89.55 93.05

Multi Scheme 80.65 83.12 90.16 93.05

Random Comittee 81.03 84.79 87.75 93.59

Randomizable Filtered Classifer 75.26 82.56 85.54 89.45

Random Sub Space 81.79 84.10 90.16 93.86

Stacking 80.65 83.12 90.16 93.05

Vote 80.65 83.12 90.16 93.05

Weighted Instances Handler Wrapper 80.65 83.12 90.16 93.05

MISC

Input Mapped Classifier 80.65 83.12 90.16 93.05

RULES

Desicion Table 80.90 82.98 89.15 92.87

JRip 81.04 83.26 89.35 93.32

OneR 79.39 82.14 88.35 92.87

Part 80.74 83.68 88.75 93.68

ZeroR 80.65 83.12 90.16 93.05

TREE

Desicion Stump 80.65 83.12 90.16 93.05

Hoeffding Tree 80.71 83.12 90.16 93.05

J48 79.50 82.98 87.95 93.32

LMT 81.24 84.65 89.15 92.42

Random Forest 81.75 85.07 88.75 93.68

Random Tree 75.47 80.61 84.33 91.07

REP Tree 80.67 83.96 89.15 93.59

AVERAGE(%) 81.09 83.26 87.53 88.43

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

19

Tables 7 – 10 show the confusion matrices of the most accurate algorithm for each data set which are Random Sub Space

Algorithm for JM1 DataSet, Random Forest Algorithm for KC1 DataSet, Naive Bayes Multinominal Text, SGDText,

Voted Perceptron, Adaboost1, CVParameter Selection, Filtered Classsifier, Multi Scheme, Random Sub Space, Stacking,

Vote, Weighted Instances Handler Wrapper, Input Mapped Classifier, ZeroR, Desicion Stump and Hoeffding Tree for

CM1 DataSet, Bagging Algorithm for PC1 DataSet.

Table 7. JM1 DataSet- Random Sub Space

Algorithm Confusion Matrix

Table 8. KC1 DataSet- Random Forest Algorithm

Confusion Matrix

Random

SubSpace

 TP FP

 False 0,978 0,864

True 0,136 0,022

Random

Forest

 TP FP

False 0,965 0,672

True 0,328 0,035

Table 9. CM1 DataSet- Algorithm Confusion

Matrix

Table 10. PC1 DataSet- Bagging Algorithm

Confusion Matrix

 TP FP

False 1,000 1,000

True 0,000 0,000

Bagging TP FP

False 0,993 0,753

True 0,247 0,007

5. Conclusion

The performances of the all algorithms are evaluated by using 4 datasets from NASA projects in terms of accuracy rate.

In our study, average accuracy was calculated for each data set. In terms of general accuracy rates, the most successful

accuracy rates were taken in PC1 data set compared to other data sets. The highest rate of 81.79% in the JM1 dataset

was obtained with the Random Sub Space algorithm. Random Forest with 85.07% in the KC1 dataset, CM 1 data set

Naive Bayes Multinominal Text, SGDText, Voted Perceptron, Adaboost1, CVParameter Selection, Filtered Classsifier,

Multi Scheme, Random Sub Space, Stacking, Vote, Weighted Instances Handler Wrapper, Input Mapped Classifier,

ZeroR, Desicion Stump and Hoeffding Tree Algorithms of 90.16% accuracy rate was obtained and Bagging algorithm

with 94.13% accuracy rate in PC1 data set. When the results are analyzed in terms of accuracy of machine learning

algorithms, it is seen that the majority of the algorithms have very appropriate values. The accuracy rates of the

algorithms are quite high in 4 datasets. In some algorithms, the accuracy rates differ greatly compared to other

algorithms, and these algorithms appear to be successful in accuracy rate calculations, as in the literature.

In future work, better results can be obtained from previous studies by replicating more object-oriented metric sets and

different data sets. In future, we want to replicate our study with more object oriented metrics and different data sets so

that generalized observations and conclusions can be made. We also intend to apply different machine learning

algorithms such as slow learner genetic algorithm to further assess the accuracy of machine learning techniques.

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

20

Acknowledgement

This research work was supported by The Scientific and Technological Research Council of Turkey

(TÜBİTAK), Project Number: 118E682. Also, we are thankful to the PROMISE software engineering repository

for providing free and easy access to the NASA defect data sets for use in our research.

References

 [1] Gayatri, M. and Sudha, A. (2014). Software Defect Prediction System using Multilayer Perceptron Neural

Network with Data Mining. International Journal of Recent Technology and Engineering (IJRTE), 3(2): 54-

59.

 [2] Menzies, T., Greenwald, J., and Frank, A. (2006). Data Mining Static Code Attributes to Learn Defect

Predictors. IEEE Transactions on Software Engineering, 33(1): 2-13.

[3] Elish, K.O. and Elish, M.O. (2008). Predicting Defect-Prone Software Modules Using Support Vector

Machines, Journal of Systems and Software, 81: 649-660.

[4] Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. (2008). Benchmarking Classification Models for Soft

ware Defect Prediction: A Proposed Framework and Novel Findings. IEEE Transactions on Software Eng-

ineering, 34(4): 485-496.

 [5] Moeyersoms, J., de Fortuny, E. J., Dejaeger, K., Baesens, B., and Martens, D. (2015). Comprehensible

Software Fault and Effort Prediction: A Data Mining Approach. Journal of Systems and Software, 100: 80-90.

[6] Gyimothy, T., Ferenc, R., and Siket, I. (2005). Empirical validation of object-oriented metrics on open source

software for fault prediction. IEEE Transactions on Software engineering, 31(10): 897-910.

[7] Dhankhar, S., Rastogi, H., and Kakkar, M. (2015) Software fault prediction performance in software

engineering, 2nd International Conference on Computing for Sustainable Global Development (INDIACom),

New Delhi, 11-13 March 2015, pp. 228-232.

 [8] Koru, A. G. and Liu, H. (2005). Building effective defect-prediction models in practice. IEEE software, 22(6):

23-29.

 [9] Ma, Y., Guo, L., and Cukic, B. (2007). A Statistical Framework for the Prediction of Fault-Proneness.

In Advances in Machine Learning Applications in Software Engineering IGI Global, 237-263.

 [10] Wang, T. and Li, W. (2010). Naive Bayes Software Defect Prediction Model, 2010 International Conference

on Computational Intelligence and Software Engineering, Wuhan, pp. 1-4.

[11] Wang, H., Khoshgoftaar, T. M., and Napolitano, A. (2011). An Empirical Study of Software Metrics Selection

Using Support Vector Machine. In SEKE July, pp. 83-88.

[12] Choudhary, G. R., Kumar, S., Kumar, K., Mishra, A., and Catal, C. (2018). Empirical Analysis of Change

Metrics for Software Fault Prediction. Computers & Electrical Engineering, 67: 15-24.

[13] Pandey, A. K. and Goyal, N. K. (2010). Predicting Fault-Prone Software Module Using Data Mining Technique

and Fuzzy Logic. International Journal of Computer and Communication Technology, 2(2):56-63.

Guven Aydın and Samli J Inno Sci Eng 4(1):11-21

21

[14] Khoshgoftaar, T.M. and Seliya, N. (2002). Software Quality Classification Modeling Using the SPRINT

Decision Tree Algorithm, In the proceedings of the 4th IEEE International Conference on Tools with Artificial

Intelligence, Washington, DC, pp. 365-374.

[15] Thwin, M.M. and Quah, T. (2003). Application of Neural Networks for Software Quality Prediction Using

Object-Oriented Metrics, In the proceedings of the 19th International Conference on Software Maintenance,

Amsterdam, The Netherlands, pp. 113-122.

[16] Elish K.O. and Elish M.O. (2008). Predicting defect-prone software modules using support vector machines,

Journal of Systems and Software, 81:649-660.

[17] Pai, G.J. and Dugan, J.B. (2007). Empirical Analysis of Software Fault Content and Fault Proneness Using

Bayesian Methods, IEEE Transactions on Software Engineering, 33: 675-686.

 [18] Yu, Menzies, T., Greenwald, J., and Frank, A. (2007). Data Mining Static Code Attributes to Learn Defect

Predictors, IEEE Transactions on Software Engineering, 33: 2-13.

[19] https://machinelearningmastery.com/what-is-the-weka-machine-learning-workbench/ Accessed: 29 January

2020

[20] Chaudhary, N., Mehta, G., and Bajaj, K. (2015). Comparison Of Classification Algorithms And Design Of A

Percentage-Split Based Method For Data Classification, IJCSIT, 2(5):1-6.

[21] Aydilek, İ . (2018). Yazılım Hata Tahmininde Kullanılan Metriklerin Karar Ağaçlarındaki Bilgi Kazançlarının

İncelenmesi ve İyileştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(5):906-914.

[22] http://promise.site.uottawa.ca/SERepository/datasets-page.html/Accessed:09.04.2020

https://machinelearningmastery.com/what-is-the-weka-machine-learning-workbench/
http://promise.site.uottawa.ca/SERepository/datasets-page.html

