
 

 
J Inno Sci Eng, 2020, 4(1): 11-21 

https://doi.org/10.38088/jise.693098 

 

 

 

 
Research Article 

 

11 

 

 A Comparison of Software Defect Prediction Metrics Using Data Mining Algorithms 

 

 

 

  
 

Abstract 

Data mining is an interdisciplinary field that uses methods such as machine learning, 

artificial intelligence, statistics, and deep learning. Classification is an important data 

mining technique as it is widely used by researchers. Generally, statistical methods or 

machine learning algorithms such as Decision Trees, Fuzzy Logic, Genetic 

Programming, Random Forest, Artificial Neural Networks and Logistic Regression have 

been used in software defect prediction in the literature. Performance measures such as 

Accuracy, Precision, Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) are used to examine the performance of these classifiers. In this paper, 4 data 

sets entitled JM1, KC1, CM1, PC1 in the PROMISE repository, which are created within 

the scope of the publicly available NASA institution's Metric Data Program, are 

examined as in the other software defect prediction studies in the literature. These 

datasets include Halstead, McCabe method-level, and some other class-level metrics. 

Data sets are used with Wakiato Environment for Knowledge Analysis (WEKA) data 

mining software tool. By this tool, some classification algorithms such as Naive Bayes, 

SMO, K *, AdaBoost1, J48 and Random Forest were applied on NASA error datasets in 

PROMISE repository and their accuracy rates were compared. The best value among the 

accuracy rates was obtained in the Bagging algorithm in the PC1 data set with the values 

of %94.13. 
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1. Introduction 

Nowadays, software is very important for everyone who uses computer systems. For this reason, software errors cause 

large or serious problems. With the development of technology in recent years, a lot of data is produced in every field. 

Defects in software are usually caused by source code. Some of this data needs to be cleaned daily. Defect prediction is 

a rapidly growing subfield of data mining. 

 

Some coding standards have been established in order to develop software with better quality and reliability. Software 

quality depends on various factors such as accuracy, availability, maintenanceability, testability and so on. A software 

is subjected to various tests throughout the development process. Errors detected are eliminated and the reliability of the 

software is increased. In every phase of software, an error can occur. However, detecting errors in the earlier stages of 

testing will reduce the test costs. For a software developer, defect prediction is a very important process to provide the 

quality and reliability of a software [1].  Data mining techniques and machine learning algorithms are useful in prediction 

of software defects. Public software defect prediction dataset repositories are increasing day by day. One of them is the 

PROMISE dataset, owned by NASA, which conducts space exploration. 

 

So in this paper a software defect prediction study was presented. The aim of this paper is to evaluate and compare the 

performance of the above mentioned classification algorithms and perform a comparative study with other research works. 

The implementation of these algorithms is carried out in WEKA data mining tool on JM1, CM1, KC1 and PC1 data sets 

freely available from the PROMISE data repository.  

 

The rest of the paper is organized as follows: In the second section, the studies on defect prediction using machine 

learning methods are shown. In the third section metric sets and data sets are given in detail. The results and discussion 

can be found in Section 4 and Section 5 provides a conclusion. 

2.  Related Works 

 

          In this section, the literature studies about software defect predictions by data mining methods were summarized in table. 

As seen from the table, there are many different algorithms such as Support Vector Machine, Logistic Regression, 

Multilayer Perceptron, Radial Basis Function, Naive Bayes, Bayes Belief Network, Random Forest, Decision Tree, 

Logistic Model Trees, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Least Angle Regression, 

Classification and Regression Tree, Alternating Decision Tree, Augmented Naive Bayes, Artificial Neural Networks 

and Discriminant Analysis were used for defect prediction. Also, it can be easily seen that there is not a definite “best 

algorithm” in this process and the algorithm which gives the best results change according to the dataset. In table-1 SVM 

is Support Vector Machine, LR is Logistic Regression,  MP is Multilayer Perceptron, RBF is Radial Basis Function, NB 

is Naive Bayes, BBN is Bayes Belief Network, RF is Random Forest,  DT is Decision Tree, LMT is Logistic Model 

Trees, LDA is Linear Discriminant Analysis, QDA is Quadratic Discriminant Analysis, LARS is Least Angle 

Regression, CART is Classification and Regression Tree (CART), ADT is Alternating Decision Tree, ANB is 

Augmented Naive Bayes, ANN is Artificial Neural Networks, and DA is Discriminant Analysis. 
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Table 1. Related Works 

Reference Data Sets Data Mining Algorithms Best  

[2] NASA  J48, NB NB 

[3] NASA SVM, LR,k-NN, MP, RBF, NB, BBN, RF, DT SVM 

[4] NASA RF, LMT, LDA, QDA, NB, Bayes Net, LARS, 

k-NN, ANN, SVM, C4.5, CART, ADT 

RF 

[5] NASA, Eclipse NB, LR, RF, ANB RF 

[6] Open source web and 

Mozilla e-mail suite 

Logistic Regression,  LR, DT, ANN LR 

[7] NASA Multi-Layered Perceptron, Bayesian Network, 

NB, ANN 

NN 

[8] NASA J48 and K* J48 

[9] NASA LR, DA, Classification Tree, Boosting, Kernel 

Density, NB, J48, IBk, Voted Perceptron, VF1, 

Hyperpipes, ROCKY, RF 

RF 

[10] NASA NB, DT NB 

[11] Telecommunication 

system,Eclipse 

project, NASA   

NB, K-NN, SVM, LR SVM 

[12] Eclipse project  DT, K-NN, RF K-NN 

and J-48 

 

 

Predicting the fault-prone software modules is of a great interest among the software quality researchers and industry 

professionals [13]. As a result of this, various efforts have been made for software defect prediction using methods such 

as Desicion Trees [3], Artificial Neural Networks [4], Support Vector Machines [5], Bayesian Methods [6], Naive Bayes 

[7], Fuzzy Logic [8, 9], Dempster–Shafer Belief Networks [10], Genetic Programming [11], Casebased Reasoning [12, 

13], and Logistic Regression [14, 15]. In the literature, there are many classification techniques, some of the most 

commonly used ID3, C4.5, logistic regression, linear and quadratic discriminant analysis, k-nearest neighbor, ANN and 

SVM [16]. 

 

In the literature, generally the fault concept is investigated. A fault is a defect in source code that causes failures when 

executed [17]. Data mining techniques and machine learning algorithms are useful in prediction of software defects. 

Data mining technique comprises of classification, regression, clustering and association [18]. It has been seen in the 

literature that there are many studies on data mining methods and software error estimation. In these studies, Halstead 

and McCabe software metrics and NASA datasets were used, and more machine learning methods were successful in 

predicting errors. Table 1 shows which data sets are used in the literature, which data mining algorithms are preferred 

and which algorithm has the most successful results. 

 

3. Material and Methods 

There are many studies in the literature with WEKA. The study was conducted on these data using clustering algorithms 

presented in WEKA. In this study the version of WEKA is used WEKA 3.8 [19]. WEKA software can calculate such as 

mean absolute error, root mean squares mean, relative absolute error and root relative squared error. This section consists 

of two main parts: (i) data sets and (ii) confusion matrix 
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3.1.  Data Sets 

 

 In this study, four data sets entitled JM1, PC1, KC1, CM1 belonging to NASA in the PROMISE database were studied. 

The data sets contain information from some NASA softwares. These datasets have an .arff extension so the file can be 

easily used in WEKA.  Table 2 gives the names of the data sets, the number of properties they have, the number of 

registers, the programming language developed, and the content of the data set. 

 

Table 2.  Data Sets Properties 

Data Set Number of 

Feature 

Number of 

Record 

Programming 

Language 

Data Sets Content 

JM1 22 10885 C Ground System 

KC1 22 2109 C++ Location Warehouse 

Management 

CM1 38 498 C Spacecraft Tools 

PC1 22 1109 C Earth orbit in flight 

 

 

The data sets include metric measurement values and variables. Each of the records in the dataset has a class label, which 

means that there is either a reported or not reported error of the software module to which it is connected [20]. The Table 

3 describes the properties of the McCabe and Halstead metrics used in the data sets. These data sets are primarily located 

in the PROMISE data warehouse, with the .arff extension, consisting of some metrics such as the complexity of the 

software from the software included in the datasets, the number of lines of code, basic and derived measurements. 

Detailed information about the definitions and calculations of McCabe and Halstead Metrics is as follows. 

 

Table 3.  Metrics Properties 

Attribute Explanation 

loc McCabe “line count of code” 

v(g) McCabe "cyclomatic complexity" 

ev(g) McCabe "essential complexity" 

iv(g) McCabe "design complexity" 

n Halstead total operators + operands 

v Halstead "volume" 

l Halstead "program length" 

d Halstead "difficulty" 

i Halstead "intelligence" 

e Halstead "effort" 

b Halstead 

t Halstead time estimator 

lOCode Halstead line count 

lOComment Halstead count of lines of comments 

lOBlank Halstead count of blank lines 

lOCodeAndComent  

uniq_Op unique operators 

uniq_Opnd unique operands 

total_Op total operators 

total_Opnd total operands 

branchCount of the flow graph 

defects {false,true} module has/has not one or 

more reported defects 

 



 

Guven Aydın and Samli  J Inno Sci Eng 4(1):11-21 

15 

 

McCabe metrics include four software metrics, consisting of essential complexity, cyclomatic complexity, design 

complexity, and Lines of Code (LOC) . Cyclomatic Complexity or "v (G)" measures the number of "linearly 

independent paths". If no path in the cluster is a linear combination of other paths in the cluster via a program's 

"flowgraph", a path set is said to be linear independent. The flowchart is a directed graph in which each node 

corresponds to a program expression, and each arc shows the control flow from one expression to another. 

 

"v (G)" is calculated by 𝑣(𝐺) = 𝑒 − 𝑛 + 2 where "G" is the flow chart of a program, "e" is the number of springs in 

the flow chart, and "n" is the nodes in the flow chart. Standard McCabes rules ("v (G)"> 10) are used to define the 

error-prone module. 

 

Essential Complexity or "ev(G)" is a measure of a flow chart that can be "reduced" by parsing all G subflowgraphs 

that are "D structured primers". Such "D-structured primers" are sometimes referred to as "single inlet single outlet 

downstream diagrams". "ev (G)" is calculated using 𝑒𝑣(𝐺) = 𝑣(𝐺) − 𝑚 ;  where m is the number of sub flowgraphs 

of "G", which are D-structured primers. 

 

Design Complexity or "iv (G)" is the cyclomatic complexity of a module's reduced flow chart. The "G" flowgraph of 

a module is reduced to eliminate the complexity that does not affect the relationship between the design modules. 

According to McCabe, this complexity measurement reflects the modules that immediately call models to their 

dependent modules. 

Lines of code is measured according to McCabe's line count rules. Halstead metrics are divided into three groups: basic 

measures, derived measures and lines of code measures [21]. 

 

Table 4.  Metric Details 

Basic Measures 

 
Derived Measures 

 
mu1 number of unique operators 

 
𝑃 = 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑉 = 𝑁 ∗ 𝑙𝑜𝑔2(𝑚𝑢) the number of mental 

comparisons needed 

to write a program of 

length N 

mu2 number of unique operands 𝑉∗ = (2 + 𝑚𝑢2′) ∗ 𝑙𝑜𝑔2(2 + 𝑚𝑢2′) volume on minimal 

implementation 

N1 total occurrences of operators 𝐿 = 𝑉∗/𝑁 program length 

N2 total occurrences of operands 𝐷 = 1/𝐿 difficulty 

length 𝑁 = 𝑁1 + 𝑁2  𝐿′ = 1/𝐷  

vocabulary 𝑚𝑢 = 𝑚𝑢1 + 𝑚𝑢2 𝐼 = 𝐿′ ∗ 𝑉′ intelligence 

mu1' =  2 

 

potential operator count (just the 

function name and the "return" 

operator) 

 

𝐸 = 𝑉/𝐿 

effort to write 

program 

mu2'      potential operand count. (the number 

of arguments to the module) 
𝑇 =

𝐸

18
𝑠𝑒𝑐𝑜𝑛𝑑 

time to write program 
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3.2. Confusion Matrix 

 

A confusion matrix is a powerful analysis tool that allows to visualize estimated values against actual values. In the 

machine learning context, a confusion matrix is a metric used to quantify the performance of a machine learning 

classifier. In addition to this confusion matrices are useful because they give direct comparisons of values like True 

Positives, False Positives, True Negatives and False Negatives. The Confusion matrix is the state of a data set and the 

number of true and false estimates of our classification model, transformed into a table. The general form of the 

confusion matrix is given in Table 5. 

 

 

Table 5. General Confusion Matrix 

 

Actual Class 

Predicted Class 

Positives Negatives 

Positives TP (True Positives) FN (False Negatives) 

Negatives FP (False Positives) TN (True Negatives) 

 

 

 

TP (True Positives): It shows examples that are actually positive and classified as positive. 

FP (False Positives): It shows examples that are actually negative and classified as positive. 

TN (True Negatives): It shows examples that are actually negative and classified as negative. 

FN (False Negatives): It shows examples that are actually positive and classified as negative. 

The following performance measures can be calculated from the confusion matrix.                      

 

 

Accuracy: 

 

It is the ratio of the number of correctly classified samples to the number of samples.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
          (1) 

Precision: 

 

The ratio of the number of positive samples correctly classified to the number of positive classified samples. 

 

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (2) 
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Mean Absolute Error (MAE): 

 

It calculates absolute average error differences between predicted values and actual values. 

 

𝑀𝐴𝐸 =
∑ |𝑥𝑖−𝑥|𝑁

𝑖=1

𝑁
            (3) 

Root Mean Squared Error: 

 

It calculates by the square root of the sum of squares of the difference between the estimated and actual values.  

 

𝑅𝑀𝑆𝐸 = √∑ |𝑥𝑖−𝑥|2𝑁
𝑖=1

𝑁
           (4) 

where  𝑥𝑖    (𝑖 = 1,2, … , 𝑁) is the real output, 𝑁 is the number of outputs. 

 

4. Results and Discussion 

 

In this study, on NASA's 4 different data sets (JM, PC1, KC1, CM1), WEKA data mining software tool with various 

algorithms were implemented with a 10-fold validation rule (Figure 1). Table 6 shows the accuracy rates of the algorithms 

applied for 4 data sets. The data sets used were analyzed by classification method and the algorithms were implemented 

in the open source data mining software tool WEKA, a 10-fold cross validation rule.   

 

 

 

Figure 1. Average Accuracy Rate Graph showing comparison between accuracy values of Table 6 
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Table 6. Accuracy Results of All Algorithms 

 

ALGORITHMS JM1 (%) KC1 (%)  CM1 (%) PC1 (%)  
BAYES      
Bayes Net 68.05 76.42 64.15 74.39  

Naive Bayes 80.42 80.75 85.34 89.17  

Naive Bayes Multinomial  83.68  70.68 90.53  

Naive Bayes Multinominal Text 80.65 83.12 90.16 93.05  

Naive Bayes Multinomial Updateable  83.68   70.68 90.53  

Naive Bayes Updatable 80.42 80.75 85.34 89.17  

FUNCTIONS      

Logistic 81.35 84.65 88.35 92.42  

Multilayer Perceptron 80.95 84.10 87.55 93.59  

SGD 70.77 84.10 89.55 93.05  

SGDText 80.65 83.12 90.16 93.05  

Simple Logistic 81.12 84.65 89.15 92.60  

SMO 80.75 83.26 89.15 92.96  

Voted Perceptron 52.21 83.12 90.16 92.60  

LAZY      

lBk 76.97 84.10 84.73 92.06  

K* 78.56 82.14 87.14 91.79  

LWL 80.65 83.12 89.75 93.23  

META      

Iterative Classifier Optimizer 80.89 84.37 89.15 93.05  

Adaboost1 80.79 83.54 90.16 93.05  

Attribute Selected Classifier 80.86 83.12 89.35 93.41  

Bagging 81.19 84.10 89.75 94.13  

Classification via Regression 81.24 84.93 89.35 93.14  

CVParameter Selection 80.65 83.12 90.16 93.05  

Filtered Classsifier 81.12 83.40 90.16 93.50  

Logi Boost 80.89 84.51 88.95 93.14  

Multi Class Classifier 81.35 84.65 88.35 92.42  

Multi Class Classifier Updatable 80.77 84.10 89.55 93.05  

Multi Scheme 80.65 83.12 90.16 93.05  

Random Comittee 81.03 84.79 87.75 93.59  

Randomizable Filtered Classifer 75.26 82.56 85.54 89.45  

Random Sub Space 81.79 84.10 90.16 93.86  

Stacking 80.65 83.12 90.16 93.05  

Vote 80.65 83.12 90.16 93.05  

Weighted Instances Handler Wrapper 80.65 83.12 90.16 93.05  

MISC      

Input Mapped Classifier 80.65 83.12 90.16 93.05  

RULES      

Desicion Table 80.90 82.98 89.15 92.87  

JRip 81.04 83.26 89.35 93.32  

OneR 79.39 82.14 88.35 92.87  

Part 80.74 83.68   88.75 93.68  

ZeroR 80.65 83.12 90.16 93.05  

TREE      

Desicion Stump 80.65 83.12 90.16 93.05  

Hoeffding Tree 80.71 83.12 90.16 93.05  

J48 79.50 82.98 87.95 93.32  

LMT 81.24 84.65 89.15 92.42  

Random Forest 81.75 85.07 88.75 93.68  

Random Tree 75.47 80.61 84.33 91.07  

REP Tree 80.67 83.96 89.15 93.59  

AVERAGE(%) 81.09 83.26 87.53 88.43  
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Tables 7 – 10 show the confusion matrices of the most accurate algorithm for each data set which are Random Sub Space 

Algorithm for JM1 DataSet, Random Forest Algorithm for KC1 DataSet, Naive Bayes Multinominal Text, SGDText, 

Voted Perceptron, Adaboost1, CVParameter Selection, Filtered Classsifier, Multi Scheme, Random Sub Space, Stacking, 

Vote, Weighted Instances Handler Wrapper, Input Mapped Classifier, ZeroR, Desicion Stump and Hoeffding Tree for 

CM1 DataSet, Bagging Algorithm for PC1 DataSet. 

 

 

Table 7. JM1 DataSet- Random Sub Space 

Algorithm Confusion Matrix  

Table 8. KC1 DataSet- Random Forest Algorithm 

Confusion Matrix 

Random 

SubSpace 

 TP FP 

 False 0,978 0,864 

True 0,136 0,022 

  

Random 

Forest 

  TP      FP 

False 0,965 0,672 

True 0,328 0,035 

  

Table 9. CM1 DataSet- Algorithm Confusion 

Matrix  

Table 10. PC1 DataSet- Bagging Algorithm                  

Confusion Matrix 

 TP FP 

False 1,000 1,000 

True 0,000 0,000 
 

Bagging TP FP 

False 0,993 0,753 

True 0,247 0,007 
 

 

 

5. Conclusion 

 

The performances of the all algorithms are evaluated by using 4 datasets from NASA projects in terms of accuracy rate. 

In our study, average accuracy was calculated for each data set. In terms of general accuracy rates, the most successful 

accuracy rates were taken in PC1 data set compared to other data sets. The highest rate of 81.79% in the JM1 dataset 

was obtained with the Random Sub Space algorithm. Random Forest with 85.07% in the KC1 dataset, CM 1 data set 

Naive Bayes Multinominal Text, SGDText, Voted Perceptron, Adaboost1, CVParameter Selection, Filtered Classsifier, 

Multi Scheme, Random Sub Space, Stacking, Vote, Weighted Instances Handler Wrapper, Input Mapped Classifier, 

ZeroR, Desicion Stump and Hoeffding Tree Algorithms of 90.16% accuracy rate was obtained and Bagging algorithm 

with 94.13% accuracy rate in PC1 data set. When the results are analyzed in terms of accuracy of machine learning 

algorithms, it is seen that the majority of the algorithms have very appropriate values. The accuracy rates of the 

algorithms are quite high in 4 datasets. In some algorithms, the accuracy rates differ greatly compared to other 

algorithms, and these algorithms appear to be successful in accuracy rate calculations, as in the literature. 

 

In future work, better results can be obtained from previous studies by replicating more object-oriented metric sets and 

different data sets. In future, we want to replicate our study with more object oriented metrics and different data sets so 

that generalized observations and conclusions can be made. We also intend to apply different machine learning 

algorithms such as slow learner genetic algorithm to further assess the accuracy of machine learning techniques. 
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