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Abstract: In this paper, exponentiated Weibull-logistic distribution is introduced. The main 

functions of proposed distribution are derived and plotted for different parameter values. 

Besides, skewness and kurtosis measures of proposed distribution are presented. Then, by 

finding moment generating function, expected value and variance are derived. A simulation 

study is given for showing performance of exponentiated Weibull-logistic distribution by 

the maximum likelihood estimation approach. Finally, applications based on real datasets 

are presented and proved that, exponentiated Weibull-logistic distribution is better than 

existing distributions in literature. 
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1. INTRODUCTION 

 

Many distributions are used to model life times and Weibull 

and Logistic distributions are some of them. The logistic 

function was proposed by Verhulst (Johnson et al. 1995) to 

define the growth curve in the 19th century and then has 

been applied to many areas over time. If the random 

variable X has Type-I Logistic (Lg) distribution its 

cumulative distribution function (cdf) is 

 

𝐺(𝑥) =
1

1 + 𝑒−𝜆𝑥   ,          𝜆 >  0. 

Correspondingly, the probability density function (pdf) of 

Type-I Logistic distribution is given by 

 

𝑔(𝑥) =
𝜆𝑒𝜆𝑥

(1 +  𝑒𝜆𝑥)2
  ,          𝜆 >  0. 

The Weibull distribution is used extensively to model 

lifetime. It was first introduced by Weibull (1951) and has 

been used in many fields, especially for lifetime data 

analysis and statistical models in engineering. Depending 

on the values of its shape parameter, it also models 

Rayleigh and exponential distributions in some cases, is 

also widely used in datasets regarding failure rates. 

 

If X has two parameters Weibull (W) distribution, its cdf is 

given by 

 

𝐹(𝑥) = 1 −  𝑒−𝛼𝑥𝛽
 ,           𝛼, 𝛽 >  0. 

 

Then, density function for Weibull distribution (for two 

parameters) is given by 

 

𝑓(𝑥) = 𝛼𝛽 𝑥𝛽−1 𝑒−𝛼𝑥𝛽
,           𝛼, 𝛽 >  0. 

 

Although the classical distributions are widely used, these 

distributions are insufficient in some application areas and 

extended forms of these distributions are needed. Hence, 

various studies (Gurvich et al. 1997; Cordeiro et al. 2015) 

have been carried out to expand the Weibull distribution 

and Weibull-type families were introduced in some of these 

studies. Examples of these distribution families are the 

Weibull-G family (Bourguignon et al. 2014; Tahir et al. 

2016a; Alizadeh et al. 2018),  Weibull-H family (Cordeiro 

et al. 2017) and Weibull-X family (Ahmad et al. 2018).  

 

In the Weibull-G family, G(x) / [1 – G(x)] conversion has 

been performed by (Hassan & Elgarhy, 2016; Tahir et al. 
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2016b; Nassar et al. 2017; Korkmaz, 2019). The cdf for X 

with the Weibull-G family distribution is obtained as 

 

𝐹(𝑥) = 1 −  𝑒
−𝛼 ( 

G(x)
1−G(x)

 )𝛽

 ,           𝛼, 𝛽 >  0. 

 

When the Logistic distribution is used as the G(x) function, 

the cdf of the Weibull-Logistic (W-Lg) distribution 

becomes 

𝐹(𝑥) = 1 −  𝑒

−𝛼 ( 

1

1 + 𝑒−𝜆𝑥  

1 − 
1

1 + 𝑒−𝜆𝑥  
 )𝛽

, 

 

 𝛼, 𝛽, 𝜆 >  0. 

 

Its simplification is as follows: 

 

𝐹(𝑥) = 1 −  𝑒−𝛼 𝑒𝜆𝛽𝑥 
 ,           𝛼, 𝛽, 𝜆 > 0. 

 

Density function of Weibull-Logistic (W-Lg) distribution is 

 

𝑓(𝑥) = 𝜆𝛼𝛽 𝑒𝜆𝛽𝑥−𝛼𝑒𝜆𝛽𝑥 
,           𝛼, 𝛽, 𝜆 >  0. 

 

Some studies have been made to generalize the Weibull 

family distributions by adding a new shape parameter (θ > 

0) (Elgarhy et al. 2017; Hassan & Elgarhy, 2018; Korkmaz, 

2018). The exponentiated Weibull-logistic (ExpW-Lg) 

distribution proposed in this study is the generalized 

version of the Weibull-Logistic (W-Lg) distribution with 

parameter θ. A new cdf is obtained by taking θ exponent of 

the relevant cdf, i.e. F(x) = G(x)θ. The new parameter added 

defines skewness, kurtosis and tail values. Here, G(x) is 

base-line distribution and F(x) is cumulative density for  

exponentiated-G distribution (Bursa & Özel, 2017). 

 

The cdf for exponentiated distribution is 

 

𝐹(𝑥) = 𝐺(𝑥)θ ,           θ > 0. 

 

The pdf of the exponentiated distribution is 

 

𝑓(𝑥) = θ 𝐺(𝑥)θ−1𝑔(𝑥) ,      θ > 0. 

 

Here, g(x) is the pdf of G(x) function. 

 

In Section 2, main functions for proposed distribution are 

given and graphs for the density and hazard functions are 

presented comparatively. The quantile function for 

proposed distribution, skewness and kurtosis values are 

obtained for different parameter values. In Section 3, 

moment generating function for novel distribution is 

derived. Then, mean and variance are calculated in this 

context. A simulation study is done using maximum 

likelihood estimation is shown in Section 4. Applications 

on real datasets are done in Section 5. Conclusions of the 

study are discussed in Section 6. 

2. EXPONENTIATED WEIBULL-LOGISTIC 

DISTRIBUTION 

Cumulative density of exponentiated Weibull-Logistic 

(ExpW-Lg) distribution is obtained as 

 

𝐹(𝑥) = (1 −  𝑒−𝛼 𝑒𝜆𝛽𝑥 
)𝜃 ,       𝛼, 𝛽, 𝜆, 𝜃 >  0. 

 

Density function for ExpW-Lg distribution is derived by 

 

𝑓(𝑥) = 𝜃 (1 −  𝑒−𝛼 𝑒𝜆𝛽𝑥 
)𝜃−1 (𝜆𝛼𝛽 𝑒𝜆𝛽𝑥−𝛼𝑒𝜆𝛽𝑥 

),  

𝛼, 𝛽, 𝜆, 𝜃 >  0. 

 

The graphs for ExpW-Lg distribution for 0.5, 2, 4 and 10 

values of θ are presented in Figure 1.  

 

 

Figure 1. The graphs for density function of the ExpW-Lg 

distribution with parameters (α=0.5; β=0.5; λ=2; θ=0.5, 2, 

4, 10). 
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As seen in Figure 1, with increasing θ value, the density 

function gets positive values and becomes narrow and 

variability decreases. 

 

Density graphs for ExpW-Lg distribution for 0.5, 2, 4 and 

10 values of α are shown in Figure 2.  

 

 

Figure 2. Density graphs for ExpW-Lg distribution with 

parameters (α=0.5, 2, 4, 10; β=0.5; λ=2; θ=2). 

Figure 2 shows that although the shape of the plots of the 

pdf remains the same with the increase of α, they shift 

towards the x axis in the negative direction.  

 

Graphs of ExpW-Lg distribution for 0.5, 2, 4 and 10 values 

of β are given in Figure 3. 

 

Figure 3. Graphs of ExpW-Lg distribution with parameters 

(α=0.5; β=0.5, 2, 4, 10; λ=2; θ=2). 

Figure 3 presents that as β value increases, plots of the pdf 

become narrow and the variability decreases. Density 

graphs for ExpW-Lg distribution for 0.5, 2, 4 and 10 values 

of λ are given in Figure 4. 

 

Figure 4. Density graphs for ExpW-Lg distribution for 

selected values of the model parameters (α=0.5; β=0.5; 

λ=0.5, 2, 4, 10; θ=2). 

Figure 4 shows that if λ increases, plots of the pdf become 

narrow and the variability decreases. Now, the pdf plots of 

the ExpW-Lg distribution are given in Figures 5-6.  

 

Figure 5. Density graphs for ExpW-Lg distribution for 

selected values of the model parameters. 

 

Figure 6. Density graphs of ExpW-Lg distribution. 

 

2.1 Survival and Hazard Functions 

 

Survival function (srf) of the ExpW-Lg distribution is 

𝑆(𝑥) = 1 −  𝐹(𝑥) 

𝑆(𝑥) = 1 − (1 −  𝑒−𝛼 𝑒𝜆𝛽𝑥 
)𝜃 ,  

   𝛼, 𝛽, 𝜆, 𝜃 >  0. 
Then, the hazard function (hrf) for ExpW-Lg distribution is 

obtained as 

ℎ(𝑥) =
𝜃𝜆𝛼𝛽 (1 −  𝑒−𝛼 𝑒𝜆𝛽𝑥 

)𝜃−1  (𝑒𝜆𝛽𝑥−𝛼𝑒𝜆𝛽𝑥 
)

1 − (1 −  𝑒−𝛼 𝑒𝜆𝛽𝑥 
)𝜃

  

 

 𝛼, 𝛽, 𝜆, 𝜃 >  0. 
 

Hazard function graphs for ExpW-Lg distribution for 0.5, 2, 

4 and 10 values of θ are given in Figure 7. 
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Figure 7. Hazard function graphs for ExpW-Lg distribution 

with parameters (α=0.5; β=0.5; λ=2; θ=0.5, 2, 4, 10). 

Hazard function graphs for ExpW-Lg distribution for 0.5, 2, 

4 and 10 values of α are depicted in Figure 8. 

 
Figure 8. Hazard function graphs for ExpW-Lg distribution 

for selected values of the model parameters (α=0.5, 2, 4, 10; 

β=0.5; λ=2; θ=2). 

 

Figure 9 shows hazard function graphs for ExpW-Lg 

distribution when the values of β are 0.5, 2, 4. 

 
Figure 9. Hazard function graphs for ExpW-Lg distribution 

with parameters (α=0.5; β=0.5, 2, 4, 10; λ=2; θ=2). 

Hazard function graphs for ExpW-Lg distribution for 0.5, 2, 

4 and 10 values of λ are 0.5, 2, 4, 10 in Figure 10. 

 

Figure 10. Hazard function graphs for ExpW-Lg 

distribution with parameters (α=0.5; β=0.5; λ=0.5, 2, 4, 10; 

θ=2). 

 

Hazard function graphs for ExpW-Lg distribution are 

presented in Figures 11-12. 

  

 
Figure 11. Hazard function graphs for ExpW-Lg 

distribution. 

 
 

Figure 12. Hazard function graphs for ExpW-Lg 

distribution. 

 

2.2 Quantile Function 

 

pth quantile for ExpW-Lg distribution is found by inverting 

the F(p) function and is given by  

𝑄(𝑝) = 𝐹−1(𝑝) = 𝑥 =

ln (−
ln (1 − 𝑝

1
𝜃)

𝛼
)

𝜆𝛽
 ,          

   0 ≤ 𝑝 ≤ 1 

The median of the ExpW-Lg distribution is obtained as  

 

𝑀𝑒𝑑𝑦𝑎𝑛(𝑋) = 𝑄 (
1

2
) =

𝑙𝑛(−
𝑙𝑛(1 − 𝑝

1
𝜃)

𝛼
)

𝜆𝛽
 

Skewness and kurtosis were computed for some parameters 

to present performance of parameters with ExpW-Lg 

distribution on skewness and kurtosis. For this aim, 

Bowley's formula for skewness (S) and Moor's formula for 

kurtosis (K) were used.  

 

When S = 0, the distribution is symmetrical, when S > 0 is 

right-skewed and when S < 0 is left-skewed. The calculated 

skewness and kurtosis for different parameter for ExpW-Lg 

distribution are given in Table 1. 

 

 

 

Table 1. Skewness and kurtosis of the ExpW-Lg distribution 
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Table 1 proves that ExpW-Lg distribution is skewed to left 

because all skewness values are less than zero (S < 0). 

However, although  

 

parameters α, β and λ change results, it is observed that 

they don’t affect the skewness and kurtosis values 

computed from the Bowley and Moor formulas. The 

skewness and kurtosis values for ExpW-Lg distribution 

change only for θ. It is observed that the value of the 

skewness and kurtosis decrease while θ increases. 

 

3. MOMENT GENERATING FUNCTION 

 

Moment generating function for ExpW-Lg distribution is 

obtained as follows: 

 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) =  ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
= 𝜃𝜆𝛼𝛽 (1 −

 𝑒−𝛼 𝑒𝜆𝛽 
)𝜃−1  (𝑒𝑡 +𝜆𝛽−𝛼𝑒𝜆𝛽 

). 

              

The variance and mean of X random variable are 

calculated. After the first and second derivatives are found, 

the mean of X random variable is found by the value t = 0 

of the first derivative of the moment generating function as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The value of 𝐸(𝑋2 ) used in the variance calculation is 

found with the t = 0 value of the second derivative for 

moment generating function. 

 

𝐸(𝑋2 ) = 𝜃𝜆𝛼𝛽 (1 −  𝑒−𝛼 𝑒𝜆𝛽 
)𝜃−1 (𝑒𝜆𝛽−𝛼𝑒𝜆𝛽 

) 

 

The mean, variance and standard deviation are, 

respectively, obtained for α = 0.5, β = 0.5, λ = 2, θ = 2 as 

follows: 

 

𝐸(𝑥) =  µ = 0.5189 

 

𝑉𝑎𝑟(𝑋)  =  𝜎2 = 0.5189 – 0.2693 = 0.2496 

 

𝜎  =  √0.2496  = 0.4996 

 

4. SIMULATION STUDY 

 

In the study, the parameters (α, β, λ, θ) were estimated by 

maximum likelihood estimation (MLE) method after these 

random numbers reaching the determined sample size and 

this procedure was repeated 1000 times. The mean and 

mean squared error (MSE) values of the estimated 

parameters were calculated at the end of the simulation. 

Within the scope of the study, parameter values were taken 

as α=0.1, β=1, λ=1, θ=2, and calculations were made for n 

θ α β 
λ = 2 λ = 4 

Skewness Kurtosis Skewness Kurtosis 

0.5 

0.5 
0.5 -0.1721597 -0.4664396 -0.1721597 -0.4664396 

2 -0.1721597 -0.4664396 -0.1721597 -0.4664396 

2 
0.5 -0.1721597 -0.4664396 -0.1721597 -0.4664396 

2 -0.1721597 -0.4664396 -0.1721597 -0.4664396 

2 

0.5 
0.5 -0.07421204 -0.2017165 -0.07421204 -0.2017165 

2 -0.07421204 -0.2017165 -0.07421204 -0.2017165 

2 
0.5 -0.07421204 -0.2017165 -0.07421204 -0.2017165 

2 -0.07421204 -0.2017165 -0.07421204 -0.2017165 

4 

0.5 
0.5 -0.03985193 -0.1086256 -0.03985193 -0.1086256 

2 -0.03985193 -0.1086256 -0.03985193 -0.1086256 

2 
0.5 -0.03985193 -0.1086256 -0.03985193 -0.1086256 

2 -0.03985193 -0.1086256 -0.03985193 -0.1086256 

10 

0.5 
0.5 -0.00619869 -0.01819422 -0.00619869 -0.01819422 

2 -0.00619869 -0.01819422 -0.00619869 -0.01819422 

2 
0.5 -0.00619869 -0.01819422 -0.00619869 -0.01819422 

2 -0.00619869 -0.01819422 -0.00619869 -0.01819422 
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= 10, 50 and 200 sample sizes. Simulation results are given 

in Table 2. 

. 

 

Table 1. Simulation results 

 

n 

Mean Mean Squared Error (MSE) 

α  

(0.10) 

β 

(1.00) 

λ 

(1.00) 

θ 

(2.00) 
α β λ θ 

10 0.122 1.113 0.978 2.192 0.0100 0.0696 0.0817 0.3814 

50 0.127 1.077 0.960 2.190 0.0067 0.0708 0.0756 0.3651 

200 0.129 1.075 0.947 2.198 0.0065 0.0713 0.0704 0.3346 

 

 

Table 2 shows that the sample size had little effect on 

variability in parameter estimates. 

 

5. APPLICATION 

 

ExpW-Lg distribution is applied on two datasets, the 

parameter estimations are done by MLE method, and the 

descriptive statistics are obtained. Parameter estimations 

were done for the W-Lg and ExpW-Lg distributions by 

MLE method. AIC, CAIC, BIC, Anderson Darling (A), 

Cramér-von Misses (CvM) statistics obtained. 

 

 

As the first dataset, an experimental data of the strength 

values of 1.5 cm of glass fibre was used in the study of 

Smith and Naylor (1987) were obtained in the National 

Physical Laboratory in England. The dataset consisting of 

63 observations is given below: 

 

Dataset-1: 0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 

1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 

1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 

1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 

1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 

1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 

1.84, 1.89, 2.00, 2.01, 2.24. 

 

The main statistics of the first dataset are given in Table 3. 

 

Table 2. The main statistics of the first dataset 

 

Mean Median Variance Min. Max. 

1.507 1.590 0.105 0.55 2.24 

 

Parameter estimations and goodness of fit statistics for first 

dataset are presented in Table 4. 

 

.

 

Table 3. Estimated parameters and goodness of fit statistics for first dataset 

 

Model 
MLE  

AIC CAIC BIC A CvM 
α β λ θ 

W-Lg 0.015 1.284 2.118 - 47.335 47.742 53.764 0.859 0.151 

ExpW-Lg 0.066 0.775 2.726 3.670 38.570 39.260 47.143 1.170 0.212 

 

 

 

The histogram and empirical curves of the W-Lg and 

ExpW-Lg distributions for the first dataset are given in 

Figure 13. Table 4 and Figure 13 show that the ExpW-Lg 

distribution is better than the W-Lg distribution for first 

dataset. 

 

 
Figure 13. Histogram of the dataset and compliance of the 

distributions to the first data. 

Then, graphs for ExpW-Lg distribution for the first dataset 

are given in Figure 14. 
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Figure 14. Graphs for ExpW-Lg distribution of first 

dataset. 

As second application, the fracture toughness data of 

Alumina (Al2O3) material is used in the study of Nadarajah 

and Kotz (2008). The dataset consisting of 119 observations 

is given below: 

Dataset-2: 5.5, 5, 4.9, 6.4, 5.1, 5.2, 5.2, 5, 4.7, 4, 4.5, 4.2, 

4.1, 4.56, 5.01, 4.7, 3.13, 3.12, 2.68, 2.77, 2.7, 2.36, 4.38, 

5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 2.04, 2.08, 2.13, 3.8, 

3.73, 3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9, 4.05, 4, 3.95, 4, 4.5, 

4.5, 4.2, 4.55, 4.65, 4.1, 4.25, 4.3, 4.5, 4.7, 5.15, 4.3, 4.5, 

4.9, 5, 5.35, 5.15, 5.25, 5.8, 5.85, 5.9, 5.75, 6.25, 6.05, 5.9, 

3.6, 4.1, 4.5, 5.3, 4.85, 5.3, 5.45, 5.1, 5.3, 5.2, 5.3, 5.25, 

4.75, 4.5, 4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 3.51, 4.13, 5.4, 

5, 2.1, 4.6, 3.2, 2.5, 4.1, 3.5, 3.2, 3.3, 4.6, 4.3, 4.3, 4.5, 5.5, 

4.6, 4.9, 4.3, 3, 3.4, 3.7, 4.4, 4.9, 4.9, 5. 

 

The main statistics of the second dataset are presented in 

Table 5. 

 

Table 4. The main statistics of the second dataset 

 

n Mean Median Variance Min. Max. 

119 4.325 4.380 1.037 1.68 6.81 

 

Parameter estimations and the goodness of fit statistics of 

the second dataset are given in Table 6. 

 

 

Table 5. Estimated parameters for second dataset 

 

Model 
MLE 

AIC CAIC BIC A CvM 
α β λ θ 

W-Lg 0.008 1.273 0.788 - 351.940 352.149 360.278 0.610 0.100 

ExpW-Lg 0.134 1.196 0.494 3.703 345.689 346.040 356.806 0.430 0.067 

 

 

 

The histogram and empirical curves of the W-Lg and 

ExpW-Lg distributions for the second dataset are given in 

Figure 15. Table 6 and Figure 15 show that ExpW-Lg 

distribution fits more to the second dataset. 

 

 
Figure 15. Histogram of the dataset and compliance of the 

distributions to the second data. 

 

Finally, cdf, srf, pdf and hrf plots of the ExpW-Lg 

distribution of the second dataset are given in Figure 16. 

 

 
Figure 16. Graphs for cdf, srf, density function and hrf for 

ExpW-Lg distribution for second dataset. 

 

4. DISCUSSION AND CONCLUSIONS 

 

In the study, Exponentiated Weibull-Logistic (ExpW-Lg) 

distribution is introduced and the statistical properties 

related to the distribution are given by obtaining the 

cumulative distribution, probability density, survival and 

hazard functions of the proposed distribution. After 

deriving quantile function, skewness and kurtosis, the 

results show that the distribution is skewed to the left, based 

on the negative values of skewness. Then, the parameters of 

the ExpW-Lg distribution are estimated by maximum 



Bilge International Journal of Science and Technology Research, 2020, 4 (2), 55-62 

62 

likelihood estimation method and the related statistics are 

given in a simulation study. Two applications of the ExpW-

Lg to real datasets shows that the new distribution fits well 

the datasets more than the W-Lg distribution. It is 

considered that the proposed distribution can be used in 

various applications and in different datasets. 
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