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Abstract 

The meshless radial basis function collocation method is an efficient numerical technique 

for solving partial differential equations. The multiquadric is the most widely utilized 

radial function for this purpose; but it contains a shape parameter, which has a significant 

effect on the performance of the method. In this study, the meshless collocation method 

employing multiquadric as the radial function with optimum shape parameters is applied 

to the numerical solution of the multigroup neutron diffusion equation. The optimization 

of the shape parameter is performed by minimizing the Madych-Nelson function. One 

external and two fission source problems are solved to investigate the performance of the 

method. The results show that the meshless collocation method with optimized shape 

parameters yield a high level of accuracy with an exponential convergence rate. 
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1. Introduction 

Meshless methods have become a powerful alternative class of numerical methods to conventional techniques such as 

finite element, boundary elements and finite difference methods in solving partial, integral and integro-differential 

equations. The radial basis function (RBF) collocation method is a prominent member of meshless methods owing to its 

truly meshless nature, exponential convergence rate and ease of implementation. The method was first proposed by 

Kansa to solve hydrodynamics problems [1] and since then, it has been applied to many fields of engineering including 

heat transfer, structural mechanics, optics, and so on.  

   

 Although there exists several radial functions in literature, the generalized multiquadric and Gaussian functions are the 

most widely utilized RBFs within the collocation method. These functions contain a term, called the shape parameter, 

which has an important role on the performance of the RBF collocation method. The shape parameter affects 

significantly the accuracy, stability and convergence rate of the meshless RBF collocation technique. In the case of 

function interpolation with the multiquadric, it was proved theoretically that the approximation error vanishes as the 

shape parameter goes to infinity if an infinite precision computation can be performed [2]. However, in practice as the 

shape parameter increases the error decreases first, but then it tends to increase when a certain value of this parameter is 

exceeded due to the ill conditioning of the interpolation matrix. This type of trade-off between accuracy and stability is 

also observed in RBF collocation solution of differential equations and it suggests that an optimum value of the shape 

parameter exists, which yields highly accurate solutions without causing instability in the numerical solution. 

 

Optimization of the shape parameter has drawn the attention of many researchers since the introduction of RBF 

collocation method for solving differential equations. Early studies focused on the number of nodes, and several 

formulae relating the optimum value of the shape parameter to this factor were proposed [3-5]. Rippa observed that the 

optimum value of the shape parameter depends on the collocation matrix and interpolation function, and proposed an 

optimization method based on the minimization of a function, which behaves similarly to the root mean square error of 

the numerical solution [6]. Also, there exist approaches utilizing genetic algorithm [7] and particle swarm optimization 

[8] for calculating the optimum shape parameter. The optimization problem was solved recently, and Luh determined 

the criteria to calculate the optimum value of the shape parameter for the generalized multiquadric function [9]. The 

optimization method is based on minimizing a function, namely the Madych-Nelson function, and it is shown to be 

effective for interpolation of functions. 

 

The neutron diffusion equation governs the behavior of neutrons in a multiplying or non-multiplying nuclear system. 

This equation was solved by the RBF collocation method [10-12]. Although an exponential convergence rate and better 

accuracy than linear finite and boundary element solutions were found [11], the use of constant shape parameters led to 

an ill-conditioning and accuracy degradation when a certain shape parameter value was exceeded. The present study 

deals with the numerical solution of the two-dimensional multi-group neutron diffusion equation in homogeneous media 

with the RBF collocation method utilizing optimum shape parameters. The multiquadric function is chosen as the radial 

function, and the potential of the meshless collocation method in producing high fidelity numerical solutions is 

demonstrated. 
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2. Numerical Formulation 

 

The two-dimensional multi-group neutron diffusion equation and its boundary conditions take the following form for a 

square domain with reflective type boundary on bottom and left sides, vacuum type boundary on top and right sides: 

 

∑ Σ𝑠,𝑔′→𝑔

𝑔−1

𝑔′=1

𝜙
𝑔′
(𝑛)
+ 𝑠𝑔

(𝑛−1)
,   0 ≤ 𝑥, 𝑦 ≤ 𝑎                                                                                                                                (1) 

 

𝜕𝜙𝑔

𝜕𝑦
(𝑥, 0) = 0,   0 ≤ 𝑥 < 𝑎

𝜙𝑔(𝑎, 𝑦) = 0,      0 ≤ 𝑦 < 𝑎

𝜙𝑔(𝑥, 𝑎) = 0,      0 < 𝑥 ≤ 𝑎

𝜕𝜙𝑔

𝜕𝑥
(0, 𝑦) = 0,   0 < 𝑦 ≤ 𝑎

                                                                                                                                                          (2) 

 

Here 𝑔 = 1,… , 𝐺 is the energy group, 𝜙𝑔 is the group neutron flux, Σ𝑟,𝑔 is the group removal cross section, Σ𝑠,𝑔′→𝑔 is 

the group-to-group scattering cross section, 𝐷𝑔 is the group diffusion constant, 𝑎 is the size of the domain, and 𝑛 is the 

iteration index. In Eq. (1), it is assumed that there is no upscattering of neutrons. The source term, 𝑠𝑔
(𝑛−1)

, depends on 

the physical configuration of the problem: 

 

 

     𝑠𝑔
(𝑛−1) =

{
 

 𝜒𝑔

𝑘(𝑛−1)
∑ 𝜈𝑔′Σ𝑓,𝑔′𝜙𝑔′

(𝑛−1)

𝐺

𝑔′=1

, Multiplying medium

𝑠𝑔,𝑒𝑥𝑡 , Nonmultiplying medium

                                                                            (3) 

 

 

In Eq. (3), 𝜒𝑔 is the group fission spectrum function, 𝑘 is the multiplication factor,  𝜈𝑔′  is the number of fission neutrons 

emitted in group 𝑔′, Σ𝑓,𝑔′ is the group fission cross section, and 𝑠𝑔,𝑒𝑥𝑡 is an external source term. For a multiplying 

medium (i.e., fission source) the neutron diffusion equation is solved iteratively by the fission source iteration [11], 

whereas a direct solution can be obtained if a nonmultiplying medium exists. 

 

The formulation of the numerical method starts by introducing a set of interpolation nodes 

 

    

𝐷 = {𝒙1, … , 𝒙𝑁𝐷}                              

𝐵𝑉 = {𝒙𝑁𝐷+1, … , 𝒙𝑁𝐷+𝑁𝑉}              

𝐵𝑅 = {𝒙𝑁𝐷+𝑁𝑉+1, … , 𝒙𝑁𝐷+𝑁𝑉+𝑁𝑅} 

𝐸 = {𝒙𝑁𝐷+𝑁𝐵+1, … , 𝒙𝑁𝐷+𝑁𝐵+𝑁𝐸}   

                                                                                                                                              (4) 
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where 𝒙 ≡ (𝑥, 𝑦), 𝑁𝐷 , 𝑁𝑉 , 𝑁𝑅  and 𝑁𝐸  represent the number of domain, vacuum boundary, reflective boundary and 

external nodes, respectively while 𝑁𝐵 = 𝑁𝑉 +𝑁𝑅 is the number of total boundary nodes. The purpose of using external 

nodes is to improve the accuracy of the collocation method by satisfying the governing differential equation on both the 

domain and the boundary [13]. 

 

The next step of the numerical solution is expanding the group neutron flux into a finite series of radial basis functions 

    𝜙𝑔(𝑥, 𝑦) ≅∑𝑎𝑗,𝑔𝜓𝑗(𝑥, 𝑦)

𝑁𝑇

𝑗=1

                                                                                                                                                          (5) 

 

where 𝑎𝑗,𝑔, 𝑗 = 1,… ,𝑁𝑇 , 𝑔 = 1,… , 𝐺 are the coefficients to be determined, 𝜓𝑗, 𝑗 = 1,… ,𝑁𝑇 are the RBFs, and 𝑁𝑇 =

𝑁𝐷 +𝑁𝐵 +𝑁𝐸 is the total number of interpolation nodes.  

 

The generalized multiquadric radial basis function is expressed as 

 

  𝜓𝑗(𝑥, 𝑦) = [(𝑥 − 𝑥𝑗)
2
+ (𝑦 − 𝑦𝑗)

2
+ 𝑐2]

𝑞
                                                                                                                              (6)   

 

where 𝑐 is the shape parameter and 𝑞 is the exponent of the generalized multiquadric function. In this study, 

the multiquadric is chosen as the RBF (i.e., 𝑞 = 1 2⁄ ), and the value of the shape parameter is determined by 

minimizing the Madych-Nelson function given by [9] 

 

    𝑀𝑁(𝑐) =

{
 
 

 
 
√
8𝜌𝜉(1+𝜃+𝑑) 2⁄ exp(𝑐𝜉)

exp(𝜉2 𝜎⁄ )
𝑐(𝜃−𝑑−1) 4⁄ (

2

3
)
𝑐 (24𝜌ℎ)⁄

, 𝑐 ∈ [24𝜌ℎ, 12𝑎𝜌)

√
2𝜉(1+𝜃+𝑑) 2⁄ exp(𝑐𝜉)

3𝑎 exp(𝜉2 𝜎⁄ )
𝑐(1+𝜃−𝑑) 4⁄ (

2

3
)
𝑎 (2ℎ)⁄

      , 𝑐 ∈ [12𝑎𝜌,∞)

                                                  (7) 

 

where 𝑑 = 2 for two-dimensional space, 𝜃 = 1 for the multiquadric, 𝜌 depends on the value of 𝜃 and 𝑑 and 

𝜌 = 1 since  𝜃 ≥ 𝑑 − 1, ℎ is the distance between adjacent nodes if interpolation nodes are uniformly 

distributed, 𝜎 is a positive number and 

 

 

    𝜉 =
𝑐𝜎 + √𝑐2𝜎2 + 4𝜎(1 + 𝜃 + 𝑑)

4
                                                                                                                                           (8) 
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Noting that there is no upscattering of neutrons, substituting Eq. (5) into Eqs. (1)-(2), and then collocating at 

the interpolation nodes yields the matrix equation 

 

   [

𝑲1 0 0 0
−𝑺1→2 𝑲2 0 0
⋮ ⋮ ⋱ 0

−𝑺1→𝐺 −𝑺2→𝐺 ⋯ 𝑲𝐺

]

[
 
 
 
 𝒂1
(𝑛)

𝒂2
(𝑛)

⋮

𝒂𝐺
(𝑛)
]
 
 
 
 

=

[
 
 
 
 𝑺1
(𝑛−1)

𝑺2
(𝑛−1)

⋮

𝑺𝐺
(𝑛−1)

]
 
 
 
 

                                                                                                                     (9) 

 

where 

 

     
𝒂𝑔
(𝑛)

= [𝑎1,𝑔
(𝑛)

𝑎2,𝑔
(𝑛)

⋯ 𝑎𝑁𝑇 ,𝑔
(𝑛) ]

𝑇
                                                              

𝑺𝑔
(𝑛−1)

= [𝑆𝑔
(𝑛−1)(𝑥1, 𝑦1) 𝑆𝑔

(𝑛−1)(𝑥2, 𝑦2) ⋯ 𝑆𝑔
(𝑛−1)

(𝑥𝑁𝑇 , 𝑦𝑁𝑇)]
𝑇
                                                                           (10) 

 

and the coefficients of the collocation matrix are  

 

     𝑘𝑖𝑗,𝑔 =

{
  
 

  
 
−𝐷𝑔∇

2𝜓𝑗(𝑥𝑖, 𝑦𝑖) + Σ𝑟,𝑔𝜓𝑗(𝑥𝑖, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑁𝐷 +𝑁𝐵
𝜓𝑗(𝑥𝑖, 𝑦𝑖), 𝑁𝐷 + 1 ≤ 𝑖 ≤ 𝑁𝐷 +𝑁𝑉

𝜕𝜓𝑗

𝜕𝑥
(𝑥𝑖, 𝑦𝑖), 𝑁𝐷 +𝑁𝑉 + 1 ≤ 𝑖 ≤ 𝑁𝐷 +𝑁𝑉 +𝑁𝑅,𝑥

𝜕𝜓𝑗

𝜕𝑦
(𝑥𝑖, 𝑦𝑖), 𝑁𝐷 +𝑁𝑉 + 𝑁𝑅,𝑥 + 1 ≤ 𝑖 ≤ 𝑁𝑇

                                            (11) 

 

     𝑠𝑖𝑗,𝑔′→𝑔 = Σ𝑠,𝑔′→𝑔𝜓𝑗(𝑥𝑖, 𝑦𝑖),                                     1 ≤ 𝑖 ≤ 𝑁𝐷 +𝑁𝐵                                                                                (12) 

 

where 1 ≤ 𝑗 ≤ 𝑁𝑇 and 𝑁𝑅,𝑥 is the number of reflective nodes for which 𝜕𝜙𝑔 𝜕𝑥⁄ = 0. It is seen from the first 

entry of Eq. (11) that the neutron diffusion equation is collocated on the boundary of the domain. Solution of 

Eq. (9) yields 𝑎𝑗,𝑔, 𝑗 = 1,… ,𝑁𝑇 , 𝑔 = 1,… , 𝐺, and hence the numerical result. 

   3. Results and Discussion 

Three problems are considered in examining the performance of the RBF collocation method utilizing optimum shape 

parameters. First case is a one-group external source problem, and the remaining problems are one and two-group fission 

source cases. All calculations are performed with MATHEMATICA 11 on a 2.5GHz computer. Uniformly distributed 

sets of interpolation nodes are employed and arbitrary precision arithmetic is used to take full advantage of the optimum 

shape parameters. For the calculation of optimum 𝑐, 𝜎 is taken as 𝜎 = 1. 

For the one-group external source case a trigonometric source is chosen: 

     𝑠𝑒𝑥𝑡 = cos (
𝜋𝑥

2𝑎
) cos (

𝜋𝑦

2𝑎
) ,   0 ≤ 𝑥 ≤ 𝑎,   0 ≤ 𝑦 ≤ 𝑎                                                                                                           (13) 
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The neutron diffusion equation simplifies to the Helmholtz equation when the neutron energy distribution is reduced to 

a single energy group and the source is an external one. Then the analytical solution of Eqs. (1)-(2) with the source 

defined in Eq. (13) becomes 

 

                 𝜙(𝑥, 𝑦) =
1

Σ𝑎[1+2𝐿
2(

𝜋

2𝑎
)
2
]
cos (

𝜋𝑥

2𝑎
) cos (

𝜋𝑦

2𝑎
) ,   0 ≤ 𝑥 ≤ 𝑎,   0 ≤ 𝑦 ≤ 𝑎                                                                             (14) 

where the removal cross section is reduced to the absorption cross section, Σ𝑎 and 𝐿 ≡ √𝐷 Σ𝑎⁄  is the diffusion length.  

 

The size of the square domain is 𝑎 = 0.25𝑚, and the nuclear parameters are 𝐷 = 0.0177764𝑚 and 𝐿 = 0.111232𝑚. 

The accuracy of the RBF collocation method is tested by calculating the maximum error and root mean square (RMS) 

error of the neutron flux defined as 

 

      𝜖𝑚𝑎𝑥 = max
1≤𝑖≤𝑁𝐷+𝑁𝐵

[|𝜙(𝑥𝑖, 𝑦𝑖) − �̃�(𝑥𝑖, 𝑦𝑖)|]                                                                                                                            (15) 

      𝜖𝑅𝑀𝑆 = √
1

𝑁𝐷 +𝑁𝐵
∑ [𝜙(𝑥𝑖, 𝑦𝑖) − �̃�(𝑥𝑖, 𝑦𝑖)]

2

𝑁𝐷+𝑁𝐵

𝑖=1

                                                                                                             (16) 

respectively, where �̃�(𝑥𝑖, 𝑦𝑖) is the numerical neutron flux distribution. Calculations are made with 300-precision 

arithmetic. 

 

The variation of the Madych-Nelson function with respect to 𝑐 when ℎ = 2.5𝑐𝑚 is presented in Fig. 1. For this node 

distance, the MN function is minimized when 𝑐𝑜𝑝𝑡 = 2.40367. The optimum value of the shape parameter tends to 

increase with a decrease in ℎ [9] and for the external source problem considered 𝑐𝑜𝑝𝑡 follows this trend up to 𝑎 ℎ⁄ = 10. 

On the other hand, for 𝑎 ℎ⁄ ≥ 15 the MN function takes its minimum value at 12𝑎𝜌 = 3. 

 

 

Figure 1. The variation of the Madych-Nelson function with the shape parameter for the external source problem when h=2.5 cm 

 

Fig. 2 illustrates the effect of node distance on the maximum and RMS errors of the collocation solution on a semi 

logarithmic scale. The results show that the method converges exponentially, and it is possible to obtain a very high 

level of accuracy even with sparse node distributions. The maximum and RMS errors decrease with decreasing ℎ, and 

it is found that 𝜖𝑚𝑎𝑥 = 5.006 × 10
−60 and 𝜖𝑅𝑀𝑆 = 5.171 × 10

−63 when 𝑎 ℎ⁄ = 50. It should be noted that the levels 
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of accuracy presented in Fig. 2 is a consequence of not only the optimum shape parameters but also the use of high 

precision arithmetic. 

 

 

 

 

 

 

 

 

Figure 2. Convergence curves for the external source problem. 

 

The second problem is a one-group fission source case where 𝑎 = 0.5𝑚, 𝐷 = 0.0177764𝑚, Σ𝑎 = 1.43676𝑚
−1, Σ𝑓 =

1.04869𝑚−1, and 𝜈 = 2.5. These parameters yield an analytical 𝑘 value of approximately 1.466574. The criterion of 

performance for this type of problem is the relative percent error in the multiplication factor defined as 

 

     𝜖𝑘 =
|𝑘 − �̃�|

𝑘
× 100                                                                                                                                                                      (17) 

 

where �̃� is the numerical multiplication factor. Numerical tests are performed with 500-precision arithmetic, and the 

convergence criterion for fission source iteration is chosen to be 10−30 in order to make it possible to be compatible 

with the high precision computations. 

The relative percent error in 𝑘, CPU time, and optimum shape parameters of the RBF collocation solution for the one-

group fission source problem are given in Table 1. The optimum value of 𝑐 increases with a decrease in ℎ, except at 

𝑎 ℎ⁄ = 5 for which the MN function takes its minimum value for 24𝜌ℎ = 2.4. Similar to the error behavior of the 

external source problem, high levels of accuracies are observed. Calculations are limited to 𝑎 ℎ⁄ = 30 due to the fact 

that the high precision arithmetic and the associated fractional convergence criterion cause the CPU time grows in a fast 

manner as ℎ decreases. 

 

Table 1. 𝜖𝑘, CPU time, and optimum shape parameters for the one-group fission source problem. 

𝑎 ℎ⁄  𝜖𝑘 CPU 

time 

(s) 

𝑐𝑜𝑝𝑡 

5 8.879 × 10−5 5.68 2.4 

10  4.083 × 10−8 67.79 1.37717 

15  4.301 × 10−13 421.163 1.83449 

20  7.085 × 10−20 1499.653 2.40367 

25 2.196 × 10−27 4067.787 3.04463 

30 4.216 × 10−29 9812.435 3.72107 

 

The final problem is a two-group fission source case. The size of the domain is 0.6𝑚, and the nuclear parameters are 

given in Table 2. The analytical value of 𝑘 for this configuration is approximately 1.152256. The numerical results are 

 

(a) 

 

(b) 
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obtained with 500-precision arithmetic. The variation of the relative percent error in 𝑘 with node distance is illustrated 

in Fig. 3. A high level of accuracy for the two-group case is achieved with the meshless collocation method. However, 

the results indicate that the convergence is slower when 4 ≤ 𝑎 ℎ⁄ ≤ 10 since the MN function is minimized at 𝑐𝑜𝑝𝑡 =

24𝜌ℎ for this interval, which means that the value of the shape parameter decreases with increasing 𝑎 ℎ⁄ . For 𝑎 ℎ⁄ ≥ 12, 

the MN function takes its minimum value in [24𝜌ℎ, 12𝑎𝜌) corresponding to an increasing trend in 𝑐𝑜𝑝𝑡 with increasing 

𝑎 ℎ⁄ . 

Table 2. Two-group nuclear data. 

Group  𝐷(𝑚)  𝜈  Σ𝑓(𝑚
−1)    Σ𝑟(𝑚

−1)  Σ𝑠,𝑔→𝑔+1(𝑚
−1)  𝜒 

1  0.046245  2.65  3.3  13.552  9.776  0.575 

2  0.046245  2.55  3.376  8.228 -  0.425 

 

The value of the optimum shape parameter is related to the size of the domain and the numerical tests on one- and two-

group fission source cases reveal that the iterative algorithm is sensitive to this factor. Depending on the value of 𝑎 the 

fission source iteration may diverge or result with a wrong multiplication factor. This issue can be dealt by decreasing 

the value of the shape parameter via increasing the value of 𝜎. 

 

 

Figure 3. The variation of 𝜖𝑘 with ℎ for the two-group fission source problem. 

4. Conclusion 

In this study, the multigroup neutron diffusion equation is solved numerically by the meshless radial basis function 

collocation method using optimum shape parameters. The multiquadric is chosen as the radial function, and the optimum 

shape parameters are determined by minimizing the Madych-Nelson function. The optimum value of the shape 

parameter depends on the node distance, and the Madych-Nelson function may take its minimum value either within or 

on the endpoints of the optimization interval. The performance of the method is tested by studying on an external and 

two fission source problems. Calculations are carried out with high precision arithmetic to take advantage of the optimum 

shape parameters. For all the cases, the meshless collocation method resulted with an exponential convergence rate and 

a very high level of accuracy. The accuracy of the method originates from the combined effect of using optimum shape 

parameters together with the employment of high precision arithmetic. Although the central processing unit time of 

computation increases sharply with decreasing node distance, the results show that the neutron flux distribution and the 

multiplication factor can be determined accurately even with a few number of interpolation nodes. However, for the 

fission source cases it is found that the iterative algorithm may diverge or result with incorrect multiplication factors, 

but this problem can be dealt with by decreasing the value of the optimum shape parameter. 
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