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Abstract 
 

Accuracy and stability are the main properties that make an algorithm preferable to its counterparts in modelling of 
physical phenomena. The radial basis function collocation method is a novel meshless technique, which exhibits an 
exponential convergence rate for the numerical solution of partial differential equations. However, it is a global 
approximation scheme and the ill-conditioning of the collocation matrix may become a serious issue if dense sets of 
interpolation nodes or high values of shape parameters are utilized. This study discusses four strategies to improve 
the accuracy and stability of the radial basis function collocation method for the numerical solution of the multigroup 
neutron diffusion equation. These strategies include using a higher precision value for computations, utilizing higher 
exponents for the generalized multiquadric, decreasing the value of the shape parameter with the number of nodes 
and singular value decomposition filtering. The results have shown that by using a higher precision value, choosing a 
variable shape parameter strategy and filtering the smallest singular values of the collocation matrix it is possible to 
improve the performance of the meshless collocation method, while increasing the exponent of the multiquadric 
results in a more accurate but less stable algorithm. 
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1. Introduction 

 
The numerical solution of partial differential equations (PDE) has a central role in science and engineering 

since these equations govern most of the physical phenomena encountered in practical applications. The 

most widely  employed technique to tackle these problems is the finite element method in which the 

elements that are used to approximate the field variable are connected in a predefined manner. Meshless 

methods have emerged to  eliminate this type of connectivity [1], and they have become a useful and 

rapidly growing class of numerical methods for the treatment of PDEs. 

 
Meshless methods can be categorized into two groups based on their numerical formulation procedures. 

Within the weak-form methods, the governing equation is integrated prior to function approximation to 

minimize the error in an average sense. As a result, the continuity requirement of the trial functions is 

weakened.  On  the  other  hand,  for  strong-form  methods  the  approximation  functions  are  directly 

substituted into the PDE. These techniques can also be combined to take advantage of different properties 

of the algorithms, and the resultant  scheme is called a hybrid method. There exist several meshless 

methods in the literature, and a detailed analysis can be found in [2]. 

 
The strong-form radial basis function (RBF) collocation method was proposed by Kansa [3]. Since its 

introduction, this meshless technique has been used for the numerical solution of various PDEs. When 

compared  with other meshless and conventional methods, the RBF collocation has some significant 

advantages: 1) Truly meshless: Most of the weak-form methods necessitate the use of a background mesh 

to perform the numerical integrations. The strong-form nature of the RBF collocation method renders it to 

be  a  fully  meshless  algorithm;  2)  Exponential  convergence:  RBF  collocation  method  exhibits  an 

exponential convergence rate for the solution of PDEs. It is possible to obtain accurate solutions even with 

a low number of discretization nodes; and 3) Ease of implementation: The method is straightforward so 

that the programming step is relatively less burdensome. 
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The fundamental problem of nuclear engineering is to determine the neutron distribution in a multiplying 
or nonmultiplying system. This distribution can be obtained by solving the neutron diffusion equation, but 

the heterogeneous nature of real life problems requires the use of numerical techniques for modelling. The 

neutron diffusion equation has been solved by both mesh-based [4] and meshless methods [5,6]. In [6] a 

comparison of the RBF collocation with finite and boundary element methods is presented. 

 
Besides the abovementioned advantageous characteristics of the RBF collocation method, strong-form 

methods  are inherently less stable than weak-form ones, and this stability issue becomes even more 

important for RBF collocation due to its global approximation property. The effectiveness of a numerical 

method, whether it is meshless or mesh-based, is evaluated by its accuracy, stability and CPU time usage, 

and it is necessary to investigate how a numerical algorithm can become more preferable to its opponents. 

In this study four strategies are discussed to improve the performance of the RBF collocation method for 

the solution of the neutron diffusion equation.  These strategies include the use of i) a higher value of 

precision,  ii) a higher exponent value of the multiquadric basis function, iii) a node number dependent 

shape parameter strategy and iv) the singular value decompostion (SVD) filtering. The rest of the paper is 

structured as follows: In section 2, the multigroup neutron diffusion  equation is introduced. The radial 

basis function collocation method and its application to the neutron diffusion equation are presented in 

section 3. Then, in section 4, discussion of the four strategies is made. The paper is closed up with the 

conclusions in section 5. 

 
2. Material and Methods 
2.1. Multigroup Neutron Diffusion Equation 

 
In 2-D Cartesian geometry, the multigroup neutron diffusion equation with vacuum (Dirichlet) boundary 

conditions  on the right and top sides, and reflective (Neumann) boundary conditions on the left and 

bottom sides have the following form for a homogeneous medium: 
 

 

 
 

 
where 

 

 

 
 
 

Here  is the energy group index,  is the iteration index, , and  are the neutron flux, 

diffusion constant and removal cross section of group , respectively.   is the scattering cross section 

from group  to group ,  is the multiplication factor,  is the fission spectrum function of group ,  is 

the fission source,  and  is an external source term. No upscattering assumption is made, which sets 
the upper limit of the group to group scattering sum to . The fission source is defined by 
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where  and  are the number of neutrons emitted per fission and fission cross section of group  , 

respectively. If the medium is a multiplying one then the neutron diffusion equation is solved iteratively 

by the fission source iteration method [6]. The iteration is terminated when a predetermined convergence 
criterion is satisfied. In the contrary  case of a nonmultiplying medium, the solution can be obtained 

directly.  When  there  is  only  one  energy  group,  the   nonmultiplying   medium  problem simplifies  to 
the Helmholtz equation: 

 

 
 

Here the removal cross section, , is reduced to the absorption cross section, . 

 
2.2. Radial Basis Function Collocation Method 

 
A function  is called radial if it satisfies the following property [7]: 

 
 

 
There are numerous radial functions with different properties proposed for function approximation and 

solution  of  differential equations, but the most well-known and widely utilized RBF is the generalized 

multiquadric (GMQ) 

 

 
 

where  is the distance between the nodes,  is the shape parameter,  is the exponent, and  
is  the  interpolation  node.  For  the  special  cases  of   and  the  function  is  called 

multiquadric and inverse multiquadric, respectively.  The  shape parameter and exponent determine the 

shape of the GMQ. With an increase in  and  , the function  flattens as observed in Figure 1. These 

parameters also affect the approximation properties of the GMQ. First, for interpolation of functions, it 

has been shown that as  the error introduced by the GMQ vanishes [8]. This  ideal property is 

probable with an infinite precision computation, and in practice, the calculations become less stable as the 

value of shape parameter increases. Secondly, the exponent  determines the positive definiteness of the 

GMQ. By Micchelli’s theorem [9] it can be shown that the inverse multiquadric is strictly positive definite 

while the multiquadric is conditionally positive definite of order one. 

 
 

Figure 1. The effect of (left) shape parameter on the multiquadric and (right) exponent on the generalized 

multiquadric basis function 
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Now let’s consider a PDE and related boundary conditions to introduce the RBF collocation method 

 

 
 

where  and  are differential operators,  and  are known functions, and  and  represent the domain 

and  boundary  of  the  problem,  respectively.  The  first  step  of  approximation  is  to  create  a  set  of 

interpolation nodes with  members: 

 

 
 

Here  and  are the numbers of interpolation nodes on the domain and boundary, respectively. As a 

strong-form method, the RBF collocation is successful in treating Dirichlet type boundary conditions, but 

the numerical solution may be deteriorated due to the inaccuracies caused by the presence of Neumann 

type conditions. Fedoseyev et al. [10] have proposed an improved version of the method, which includes 

PDE collocation on the boundary, and external interpolation nodes to preserve a determined system of 

equations. From this point of view, a set of  external nodes,  , with  members are also created to 

enhance the accuracy of the method. 

 
The next step of the RBF collocation method is the interpolation of the field variable of Eq. (7) with a 

series of radial basis functions 

 
 

where  are the coefficients to be determined. Substituting Eq. (9) into Eq. (7) and collocating the 

resultant equations at  and  for the PDE and at  for the boundary conditions yields 

 

 
 

where , and  . The system of equations, Eq. (10), can be cast 

into  a  matrix  equation  of  the  form   ,  where  dimensional  collocation  matrix  ,   
dimensional coefficient and source vectors and  are given by 

 

 
 

The solution of  gives the coefficients, , and hence the numerical solution. 

Applying this algorithm to the multigroup neutron diffusion equation and boundary conditions yields 
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where  is the normal derivative,  is the number of nodes on the reflective boundaries and the total 

source term  is given by 

 

 
 

Notice that the group-to-group scattering sum is taken into account as a source term due to the no 

upscattering assumption. The elements of the collocation matrix are thus given by 

 

 
 

3. Results and Discussion 
 

The four strategies to improve the performance of the RBF collocation solutions of neutron diffusion 

equation are evaluated by considering a 1-group external source and a 3-group fission source problem. 

Uniformly scattered sets of nodes with a fill distance of  are utilized and the external nodes are placed at 

a distance of  to the closest boundary node. The calculations are performed on a domain scaled to  
by utilizing the invariance of RBF collocation under uniform scaling. The scaling is done via multiplying 

 by . Computations are carried out with MATHEMATICA. 

 
For the external source problem, a constant source of  is chosen. The analytical solution of this case is 

 

 
 

where  is the diffusion length. For calculations, the upper limits of the infinite series in Eq. (15) 

are set to 250. The source term, the diffusion length and the diffusion constant are chosen as , 

 and  , respectively. The length of the  domain is  . The accuracy of the 

RBF collocation method is determined via the root mean square (RMS) error: 

 

 
 

where is the numerical neutron flux distribution. 
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The reference value for the multiplication factor of the 3-group fission source problem can be found by 

solving 

 

 
 

In Eq. (17),  is called the geometrical buckling. The nuclear data of this problem is given 

in  Table  1.  Diffusion  constants  and  cross  sections  have  units  of and    ,  respectively.  When 

,  solution  of  Eq.  (17)  yields  a  multiplication  factor  of  .  For  calculations,  the 

convergence criterion is set to . 
 
 

 

Group 

1 

Table 1. Three-group nuclear data. 

2                                       -  

3 - - 
 

 

The error criterion for the fission source problem is the relative absolute percent error in the multiplication 

factor 

 

 
 

where  is the numerical multiplication factor. 

 
3.1 The Effect of Precision on the Stability of the Method 

 
A brute force method to improve the stability of the solution is to increase the precision. Generally, the 

matrix  condition number is used to test whether a numerical method is stable or not. For an algebraic 

system of equations, the relative round-off error can be estimated by [11] 

 
 

 
where  is the condition number and  is the machine precision. Using a higher precision arithmetic 

decreases the machine precision and therefore it provides a more stable computation environment, since 

for a specified round-off error it is possible to achieve higher condition numbers. 

 
In order to test the effect of precision on the stability of the method, the external source problem with the 

constant source is considered. Figure 2 shows the comparison of results obtained by FORTRAN’s double 

precision and MATHEMATICA’s 100-precision arithmetic. In these calculations the shape parameter of 

the multiquadric radial basis function is chosen as  . It is clear from this figure that using a higher 

precision has improved the stability of the method. For the double precision, the RMS error has started to 

increase above  whereas it has continued to  decrease when calculations are done with 100- 

precision. 



J Inno Sci Eng 2018, 2(1): 8-18 

14 

 

 

 
  

 
 

 

 
Figure 2. Comparison of double and 100-precision calculations in the RBF collocation method 

 
The price to pay when the precision is increased is the CPU time, as expected. To see the relation between 

precision and CPU time, several numerical tests are performed with different precision values, and it is 

found that higher precision arithmetic becomes worse in terms of CPU time as the number of nodes used 

in discretization gets higher. As an example, for  , the CPU time is  more when 100- and 20- 

precision computations are compared. 

 
3.2 Exponent of the Generalized Multiquadric 

 
The shape parameter, , has a vital role in the RBF collocation method, and many studies focus on the 

effects of this parameter in order to improve the accuracy and stability of the numerical solutions [12-14]. 

Although the exponent of the generalized multiquadric basis function has a geometrical effect similar to 

that of the shape  parameter, most of the works utilize the multiquadric and inverse multiquadric basis 

functions without considering the possible effects of the exponent, . 

 
To see the influence of  on the accuracy and stability of the algorithm the 3-group fission source problem 

is dealt with. The shape parameter of the GMQ is chosen as  . In Figure 3, the variation of relative 

absolute percent error with respect to  is plotted for three values of the exponent. It is observed from 

this figure that the accuracy of the  method increases with increasing  value, however the algorithm 

becomes less stable. When  (i.e., the MQ case),  the RMS error decreases with the fill distance 

continuously,  while  it  started  to  increase  above   and  ,  for    and  , 

respectively. It can also be deduced from Figure 3 that increasing the exponent enhances the convergence 

rate of the collocation method. These results show that it is possible to improve the accuracy of the RBF 

collocation  method in expense of stability by increasing the exponent of the generalized multiquadric 

radial basis function. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The variation of with respect to for the 3-group fission source problem 
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3.3 Node Number Dependent Shape Parameter Strategy 
 

Radial basis functions can be expressed in different forms. For instance, the GMQ can be stated as 

 

 
 

where  is called the relative width parameter since it is the width relative to the fill distance [15]. It is 

obvious that  corresponds to a constant shape parameter approach where  is an arbitrary constant. 

In  [15],  six  strategies  were  tested  to  treat  the  Runge  phenomenon  which  is  a  source  of  accuracy 

degradation for numerical  methods. One of these strategies is to use a variable  scheme instead of a 

constant one. It was found that by  decreasing  as , the Runge phenomenon can be defeated in 

interpolation of functions. 

 
This node number dependent shape parameter approach is examined for the solution of the 3-group fission 

source problem. The multiquadric is used as the basis function. The  values of this strategy are presented 

in Figure 4 together  with those of constant  and constant shape parameter (i.e., ) strategies. This 

figure shows that the variable scheme  provides much more accurate and stable results than 

those of constant  approach when  . In addition to this, although the  approach yields higher 

accuracy, the error starts to oscillate above . Thus, when encountered with an instability due to 

constant shape parameters,  it  is possible to stabilize the numerical algorithm by decreasing the shape 

parameter with . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  values of the node number dependent shape parameter, and approaches for the 3- 

group fission source problem 

 
3.4 Singular Value Decomposition Filtering 

 
For an  matrix  the SVD is defined by 

 
 

 
where  and  are orthogonal matrices and  is a square diagonal matrix containing the singular values. 

These matrices satisfy [16] 
 

 
where . In [17] it has been shown that SVD can be used as a tool for teaching linear 

algebra geometrically, and also it is applied in solving least squares problems and data compression. 
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SVD is an effective tool for solving linear systems when the matrix in question is ill-conditioned. Since 

the RBF  collocation method is a global approximation scheme, it gives a full matrix at the end of 

discretization process. The solution can become unstable depending on the values of the fill distance,  
and shape parameter, . Hence, SVD may improve the performance of the algorithm by treating the ill- 

conditioning of the collocation matrix. 

 
Now suppose that the linear system resulting from approximation of a PDE with its BCs is given by 

 
 

 
If this system is decomposed into its singular values one has 

 
 

 
and the vector whose elements are the coefficients of the RBFs can be found by 

 
 

 
When the condition number of  is high, it is useful to omit the smallest singular values by replacing  
with zero in . By performing this SVD filtering, the amplification of round-off errors corresponding to 

the smallest singular values is depressed [15]. 

 
Numerical experiments are performed with the multiquadric to see the effect of SVD filtering with 50- 

precision arithmetic for the constant external source case. The fill distance is chosen to be  which 

means  that  there  are 320  singular  values.  For these  fill  distance  and  precision   values  instability is 

observed when  if all singular values are kept. The contour plot in Figure 5 demonstrates the RMS 

error with respect to the shape parameter, , and the number of singular values omitted in calculations, . 

This figure shows that SVD filtering can improve the accuracy of the RBF collocation method in both 

stable  and  unstable  regions.  The  results  also  show  that  as  the  shape  parameter  increases  (i.e.,  the 

collocation matrix becomes more ill-conditioned),  has to be increased to obtain the best results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. RMS error of constant source problem with respect to and 
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4. Conclusions 
In this paper, four strategies are considered to improve the accuracy and stability of the meshless radial 

basis function collocation method for the numerical solution of the multigroup neutron diffusion equation. 

Both external and fission source problems are studied. The results of the numerical experiments can be 

summarized as follows: 

 Increasing the precision of the calculations has resulted in a more stable solution for the sake of 

CPU time. 

 The exponent of the generalized multiquadric has a similar effect to that of the shape parameter 

since  a  tradeoff  is  observed  between  the  accuracy  and  the  stability  of  the  method  with  an 

increasing exponent value. 

 The collocation method can be stabilized by utilizing a node number dependent shape parameter 

strategy in which the value of the shape parameter decreases as a denser set of interpolation nodes 

is employed. 

 When  the  collocation  matrix  becomes  ill-conditioned,  the  accuracy  of  the  algorithm can  be 

enhanced by the singular value decomposition filtering technique. 
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